天体プラズマにおける粒子加速機構

無衝突系粒子シミュレーション

星野真弘 理学系研究科·地惑惑星科学専攻

** PIC (Particle-In-Cell) シミュレーション **
つ プラズマ輸送係数の研究 (MHDでは現象論的に扱う 粘性、電気抵抗、熱伝導に関わる物理)
〇 非熱的プラズマ (局所的熱平衡ではない物理)
〇 電子とイオンのエネルギー分配
〇、、、

- 宇宙での高エネルギー粒子の観測
- 数値チェレンコフ問題
- 無衝突系での磁気回転不安定(Magneto-Rotational Instability)と粒子加速

Particles/(cm²sr-MeV/nucleon)

超新星爆発衝撃波の加速

超新星爆発の衝撃波の観測

宇宙最高エネルギーの宇宙線 (10²⁰eV = 16J)

Auger Cosmic Ray Observation

 \bigcirc Arrival Direction of 6x10¹⁹eV

X Active Galactic Nuclei (AGN)

g

Science (2007)

Relativistic Shock/Magnetic Reconnection

Energetic ions and electrons in solar flares

(GOES class X4.8)

[Emslie et al., 2004]

electrons up to tens of MeV, ions up to tens of GeV [Lin et al., 2003]

宇宙での高エネルギー粒子

- ・遠くの宇宙での粒子加速
 - 超新星爆発にともなる非相対論衝撃波
 - 宇宙ジェットでの相対論的衝撃波
 - パルサー星雲での相対論的衝撃波
 - (何となく運動エネルギー変換と思われている)
- 太陽系での粒子加速
 - 太陽フレアでの磁気リコネクション
 - 地球磁気圏/オーロラサブストームでの磁気リコネク ション
 - (何となく磁場エネルギーの変換と思っている)

Relativistic Simulations and Numerical Cherenkov

M. Hoshino

Acknowledgements: T. N. Kato and K. Nagata

2D Relativistic Shock Simulation

Simulation Parameters

- NX*NY=1024*32
- NP(initial)=NX*NY*16
- σ=0.1, γ=10, mi=me
- vth/c = 0.02, Lgyro/ $\Delta x = 50$
- $c\Delta t/\Delta x = 0.2$
- time step = 4000
- CPU time @SX6 = 5min*4CUP (3.7 Gflops)
- Memory Size = 1.2 GB,

数値ノイズ(格子振動)の原因は?

・空間の差分からくるのか?
・フーリエ空間ではどうか?

・1次元コードでは現れないのに、2次元/3次 元コードではあらわれるのか?

•相対論的な流れ場があるときだけか?

・プラズマ温度が高い時は現れないのか?

Simulation Parameters

- NX*NY=128*128
- NP(initial)=NX*NY*16
- γ=100-0.57, mi=me
- $v_{th}/c = 0.1$, Debye/ $\Delta x = 1$
- $c\Delta t/\Delta x = 0.9$
- time step = 2000
- CPU time @Xeon = 40sec*6core
- FFT codes/ Finite Difference code
 - 2種類のFFT code
 - (a) Maxwell方程式の厳密解に基づくもの
 - (b) 空間微分だけをフーリエで置き換えたもの

Numerical Experiment (1)

Thermal Run, $V_b=0$

実空間

Numerical Experiment (2)

ω -k diagram for "light wave"

ω -k diagram for "entropy wave"

resonance of "light" and "entropy" waves

Numerical Experiment (3)

実空間

Numerical Experiment (4)

U_b=100, Filter (短波長の波動をカット)

実空間

フーリエ空間

Numerical Experiment (5)

(cf. シミュレーション天文学 p.200) $U_{b}=100$, Semi-Implicit-FFT with $\alpha=0.6$

Semi-Implicit Scheme

自由空間波(ω=kc)に対して陰的解法、プラズマ効果は陽的解法

α=1/2 時間に対して中央差分、1/2< α <1 後退差分</p>

(note: 通常は α = 0.501~0.505がお勧め)

(cf. シミュレーション天文学 p.200)

Numerical Experiment (6)

$U_b=100$, Relativistic hot plasma T/mc²=10

By & Ex

finite difference scheme

resonance of "light" and "entropy" waves (finite difference scheme)

 $v_b = 0.99$ $v_b = 0.5$

"direct" resonance by numerical dispersion effect

Numerical Experiment (7)

U_b =100, finite-difference scheme

Numerical Experiment (8)

$V_b=0.5$, finite-difference scheme

Origin of Numerical Cherenkov

resonance between "physical wave (light wave)" and "entropy wave (density fluctuation wave)" with aliasing effect

対策: (1) 短波長の波動をFilter で落とす. (2) FFT code を使う.

FFT scheme

$$\frac{1}{c} \frac{\partial E(k)}{\partial t} = ik \times B(k) - \frac{4\pi}{c} J(k),$$

$$\frac{1}{c} \frac{\partial B(k)}{\partial t} = -ik \times E(k),$$

$$k \cdot B(k) = 0, \quad k \cdot E(k) = 4\pi\rho(k).$$

$$\vec{E}^{n+1} = \cos(kc\Delta_t)\vec{E}_{\perp}^n + \frac{\sin(kc\Delta_t)}{k}\left(i\vec{k}\times\vec{B}^n - \frac{4\pi}{c}\vec{J}_{\perp}^{n+1/2}\right) - 4\pi i\frac{\vec{k}}{k^2}\rho^{n+1},$$

$$\vec{B}^{n+1} = \cos(kc\Delta_t)\vec{B}_{\perp}^n - i\frac{\sin(kc\Delta_t)}{k}\vec{k}\times\vec{E}^n + i\frac{1-\cos(kc\Delta_t)}{k^2}\vec{k}\times\left(\frac{4\pi}{c}\vec{J}_{\perp}^{n+1/2}\right).$$

(cf. Birdsall & Langdon, p.365)