Astrophysical Turbulence

Dongsu Ryu\(^{(1)}\) Jungyeon Cho\(^{(1)}\) Jongsoo Kim\(^{(2)}\)

\(^{(1)}\) Chungnam National University, Korea
\(^{(2)}\) Korea Astronomy and Space Science Institute

- What is turbulence?
- What has been studied about turbulence?
- What are problems involving turbulence?
What is turbulence?

Turbulence is a flow regime characterized by high momentum convection, low momentum diffusion, and pressure and velocity variation with time.

The Reynolds number characterizes whether flow conditions lead to turbulence or not.

\[\frac{\partial \vec{v}}{\partial t} = -\left(\vec{v} \cdot \vec{\nabla} \right) \vec{v} + \nu \nabla^2 \vec{v} - \frac{1}{\rho} \vec{\nabla} p \]

\[\frac{\nu^2}{L} \quad \frac{\nu \nu}{L^2} \]

\[\text{Re} \sim \frac{\nu^2}{L} \frac{\nu \nu}{L^2} \sim \frac{\nu L}{\nu} > \sim 100 - 1,000 \quad \rightarrow \text{turbulent!} \]
Van Dyke 1982 experiment

Edgar et al numerical simulations

Re = 24.8

Re = 0.16

Re = 9.6

Re ~ 1,500

Re = 140

Re >> 1

March 13-17, 2006 Asian Winter School on Numerical Astrophysics Chiba University, Japan
turbulent flow around an obstacle; the flow further away is laminar

turbulence creating a vortex on an airplane wing

terrestrial examples 1
terrestrial examples 2
Astrophysical examples 1

Re >> 1 in astrophysical environments

A Solar filament

Jupiter's Great Red Spot from Voyager
astrophysical examples 2

Crab Nebula - supernova remnant

NGC 6302; Big, Bright, Bug Nebula - planetary nebula
Statistical description of turbulence

Power spectrum, P_k - the portion of a signal’s power (energy per unit wavenumber) falling within given wavenumber

$\nu (\vec{r}), \rho (\vec{r}), \sqrt{\rho (\vec{r}) \nu (\vec{r})}, B(\vec{r}), ...$

$q(\vec{k}) \sim \int q(\vec{r}) d^3r$

Fourier transformation

$P_k \sim |q(\vec{k})|^2 k^2$

$\int P_k dk \sim \langle q(\vec{r}) \rangle^2$
Theory of turbulence

Kolmogorov's theory for incompressible hydrodynamic turbulence: it is based on the notion that that large eddies can feed energy to the smaller eddies and these in turn feed still smaller eddies, resulting in a cascade of energy from the largest eddies to the smallest ones.

On dimensional grounds, the only way of writing \(\varepsilon \) (energy transfer rate) in terms of \(V \) (velocity) and \(l \) (scale) is

\[
\varepsilon \sim \frac{V^2}{t} \sim \frac{V^3}{l} \sim \text{constant}
\]

\[
V \sim l^{1/3}
\]

\[
P_k \sim k^{-5/3}
\]

The spectrum of Kolmogorov turbulence
In astrophysical environments

\[\text{Re} \sim \frac{\nu L}{\nu} \gg 1 \]

magnetic field exists in astrophysical environments:
- with magnetic field
- fluid \(\rightarrow \) drags magnetic field
- magnetic field \(\rightarrow \) exerts tension and pressure
- fluid and magnetic field moves together ("frozen")

\[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \frac{1}{\rho} \nabla p = \frac{1}{4\pi\rho} \left(\nabla \times \mathbf{B} \right) \times \mathbf{B} \]

\[\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \left(\mathbf{B} \times \mathbf{v} \right) \]
with weak regular field (\(B_o \) small or \(v_A = \frac{B_o}{\sqrt{4\pi\rho}} \ll v \)) and still incompressible or subsonic super-Alfvenic turbulence

\[
M_A = \frac{v}{v_A} \gg 1
\]

more kinetic energy on larger scales, more magnetic energy on smaller scales, but \(P_k \propto k^{-5/3} \) for kinetic + magnetic power spectrum

(Haugen, Brandenburg et al, ...)
Goldreich & Sridhar model

for strong regular field

\[(B_o \text{ large or } v_A = \frac{B_o}{\sqrt{4\pi\rho}} \sim \nu) \]

but still incompressible or subsonic

Applicable to most part of the ISM
Goldreich & Sridhar model

critical balance

\[
\frac{l_\perp}{l_{||}} \sim \frac{b_l}{B_0}
\]

constant energy cascade

\[
\mathcal{E}_{\text{cascade}} = \frac{b_l^2}{b_l / l_\perp} = \text{constant}
\]

\[
b \sim l_\perp^{1/3} \quad \text{or} \quad P_k \sim k^{-5/3}
\]

\[
l_{||} \sim l_\perp^{2/3}
\]
what the Goldreich & Sridhar model says

\[\nu_\perp \sim l_\perp^{1/3} \]

\[l_\parallel \sim l_\perp^{2/3} \]

Kolmogorov

larger anisotropy at smaller scales
but astrophysical turbulence is highly compressible!

\[\frac{\delta \rho}{\rho} \gg 1 \]

and often highly supersonic!

\[M_s = \frac{\nu}{c_s} \gg 1 \]

so astrophysical turbulence has to be studied numerically!
compressible hydrodynamic turbulence

sound mode (compressible mode)
 sound waves or shock waves
+ advection (incompressible or solenoid mode)
 mixing

hydrodynamics with the isothermal TVD code
3-D with 512^3 and 256^3 grid zones for various M_s

(Kim & Ryu 2005)
In 3D, there are both compressible and solenoidal modes. The slope changes from $-5/3$ to -2 as M_s increases. The velocity power spectrum from 3D hydro simulations is given by $P_k \sim k^{-2}$.

\[P(k) \]
density power spectrum from 3D hydro simulations

In 3D, there are both compressible and solenoidal modes.

Slope changes from $-5/3$ to 0 as M_s increases.
saw-toothed
distributions

3d hydro
turbulence
with $M_s = 1.2$

“saw-toothed”
distributions
3d hydro turbulence with $M_s = 12$

“peaked” distribution for density
“saw-toothed” distribution for velocity
compressible magnetohydrodynamic (MHD) turbulence

Alfven mode ($v = v_A \cos \theta$)
incompressible, restoring force=mag. tension

slow mode ($v \sim c_s$)
for magnetically dominated plasma ($v_A \gg c_s$), this is a sound wave along magnetic field; compression of gas

fast mode ($v \sim v_A$)
for magnetically dominated plasma ($v_A \gg c_s$), this is magnetic field compression wave; compression of B field
scaling relation for low β and high M_s turbulence

\[\beta = \frac{p_{\text{gas}}}{p_{\text{magnetic}}} \]

Alfven $\sim k^{-5/3}$

slow $\sim k^{-5/3}$

fast $\sim k^{-3/2}$?

(Cho & Lazarian 2002)
what seems to have learned about compressible turbulence with low β and high M_s (applied to the ISM)

power spectra of velocity and magnetic field
- Alfven mode: Kolmogorov slop, anisotropic - G-S model
- slow mode: Kolmogorov slop, anisotropic (passively) - G-S model
- fast mode: -1.5 slop (?), isotropic

velocity power spectrum
- Alfven mode $>$ fast+slow mode
 (solenoid mode $>$ compressible mode)

density power spectrum
- shallower slop
Armstrong & Spangler (1995)

composite power spectrum from observations of various observations

power spectrum of electron column density in the interstellar medium

Kolmogorov slop

Armstrong & Spangler (1995)
density power spectrum of cold HI gas ($M_s \sim 2-3$)

dash line represents a dirty PS obtained after averaging the PW of 11 channels.
solid line represents a true PS obtained after cleaning.
much shallower power spectrum!

(Deshpande et al. 2000)
power spectra of various observed quantities: seem to be compatible with that of Kolmogorov turbulence in most observations, but not in all observations in astrophysical turbulence

— compressibility is important, or flow is supersonic
— magnetic field exists
— observed power spectrum is not that of velocity
Two star formation theories

SF regulated by AD

SF regulated by turbulence

ion
neutral
SPH calculations

sink particles $\rho > 10^4 \rho_0$

SFEs measured in 3D driven HD turbulent flows

- M_* is mass fraction in sink particles.
- $\langle M_J \rangle_{turb}$ is effective turbulent Jeans Mass
- SFEs are very high in 3D driven HD turbulent flows, except cases driven at small scales.

(Klessen et al. 2000)

March 13-17, 2006 Asian Winter School on Numerical Astrophysics Chiba University, Japan
Turbulence in the Coma Cluster ICM

(Schuecker et al. 2004)
Pressure fluctuations

Histogram of projected pressure fluctuations

$\delta \rho$ vs δT

Fluctuations are mostly gaussian and adiabatic

March 13-17, 2006 Asian Winter School on Numerical Astrophysics Chiba University, Japan
noise subtracted power spectrum of projected pressure fluctuations with slope $n \sim -7/3 \ldots -5/3$

energy content of turbulence as fraction of thermal energy

→ subsonic turbulent

close to Kolmogorov
Thank you!