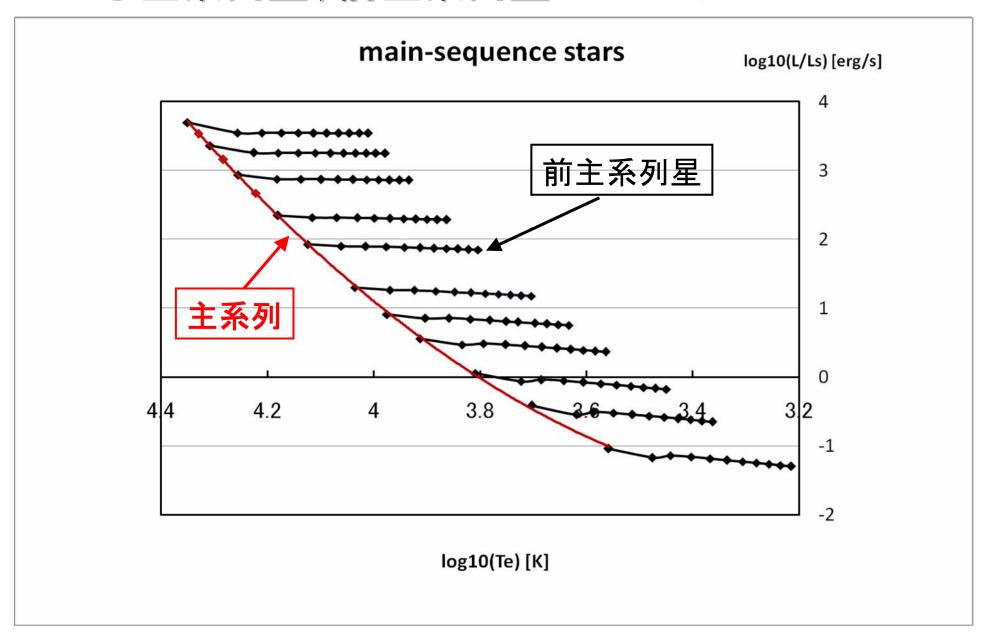

星の構造方程式による主系列星の 内部状態シミュレーション

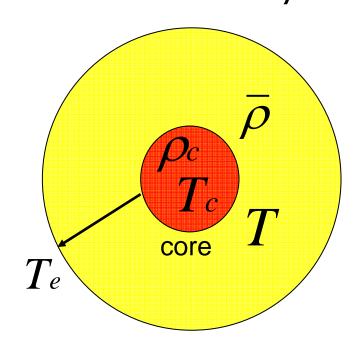
宇宙物理学研究室 清水 瑛史


●目的

 簡易化した星の構造方程式を解くことにより主系 列星(main-sequence star)の内部状態を計算

- 前主系列星(pre-main-sequence star)が主系列星
- へと進化する過程をグラフ上に再現する。

●主系列星、前主系列星について



●今回扱う主系列星のモデル

核反応が起っているcoreとそれ以外の層に分割。

中心: 温度 T_c 密度 ρ_c

外層: 温度 T 密度 ρ

有効温度(表面温度)

$$T_e = \left(\frac{L}{4\pi R^2 \sigma}\right)^{\frac{1}{4}}$$

L:単位時間当たりに放射する エネルギー

①主系列星の構造方程式

・連続の式

$$\frac{dp}{dr} = \rho \frac{GM_r}{r^2} \qquad \square \qquad M = \frac{4\pi R^3 \rho}{3}$$

$$M = \frac{4}{3}\pi R^3 \frac{\rho c}{54.1825} \left(\frac{\rho c}{\rho} = 54.1825\right) \qquad$$

- 静水圧平衡の式

$$\frac{dp}{dM_r} = \frac{GM_r}{4\pi r^4} \quad \Box \qquad \qquad \boxed{p} = \frac{GM^2}{4\pi R^4}$$

$$p_c = 11.5066 \frac{GM^2}{R^4} - 2$$

・理想気体の圧力

$$p = \frac{k_B}{\mu H} \rho T + \frac{a}{3} T^4$$
 - - ③ $\begin{pmatrix} \mu: & \text{平均分子量=0.6} \\ \text{H: 原子質量単位} \end{pmatrix}$

opacity

$$K = Ke + K_{ff}$$
 · · · 4

・核反応率(単位質量当り)

$$\mathcal{E}_n = \mathcal{E}_{pp} + \mathcal{E}_{CNO}$$
 • • • • • • • • • •

・ 光によるエネルギー輸送の式

$$\frac{dT}{dr} = -\frac{1}{\lambda} \frac{L_r}{4\pi r^2} \qquad \left(\lambda = \frac{4\sigma T^3}{3\rho\kappa}\right) \qquad \lambda : 熱伝導率$$

$$\frac{d \ln T}{d \ln p} = \frac{3}{16\pi \sigma G} \frac{p}{T^4} \frac{\kappa L_r}{M_r} = \frac{1}{4} - ...$$
 6

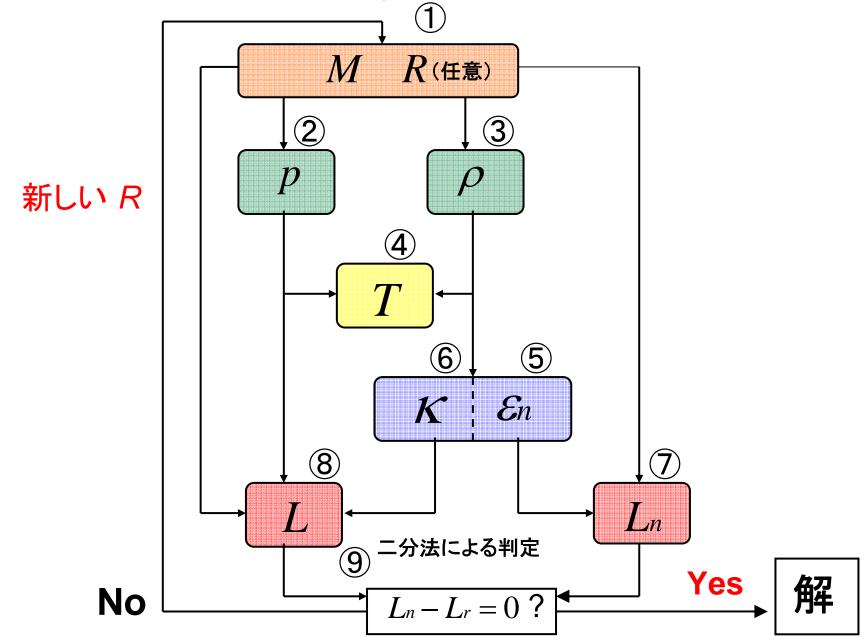
・エネルギー保存の式

$$\frac{dL_r}{dM_r} = \varepsilon_n + \varepsilon_g$$

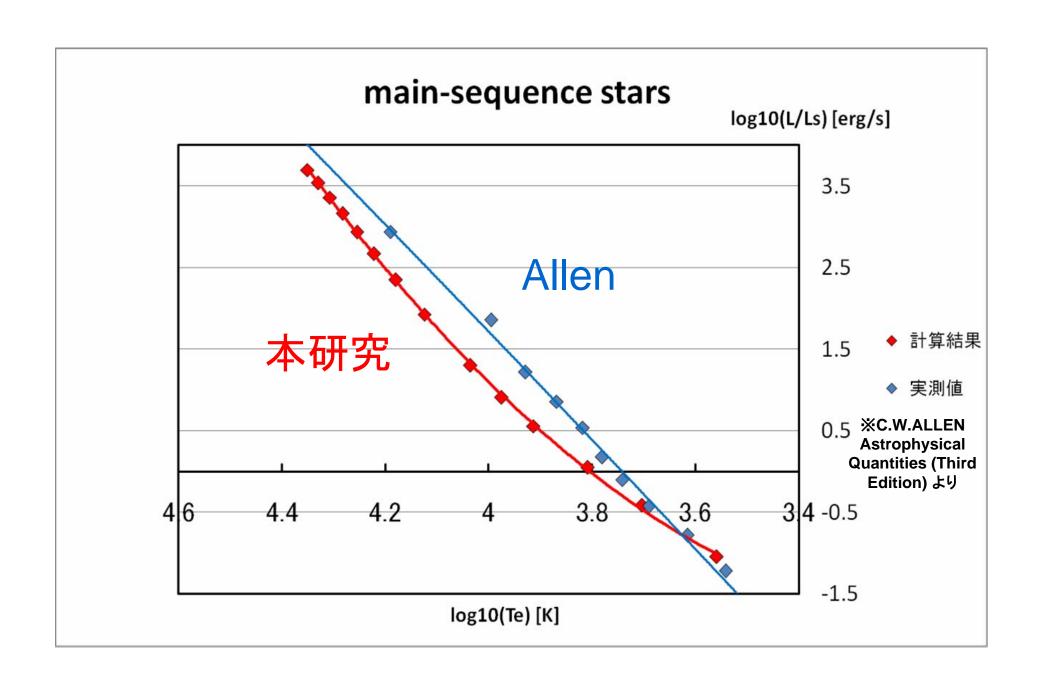
$$\left| \frac{dL_r}{dM_r} = \varepsilon_n + \varepsilon_g \right| \left(\varepsilon_g = -\frac{du}{dt} - p \frac{d\left(\frac{1}{\rho}\right)}{dt} \right)$$

主系列星では
$$L_n - L = 0$$

$$\mathcal{L}_{\mathcal{E}_g} = 0$$
 これより


$$\frac{dL_n}{dM} = \varepsilon_n \quad \Longrightarrow \quad \boxed{L_n = \varepsilon_n M}$$

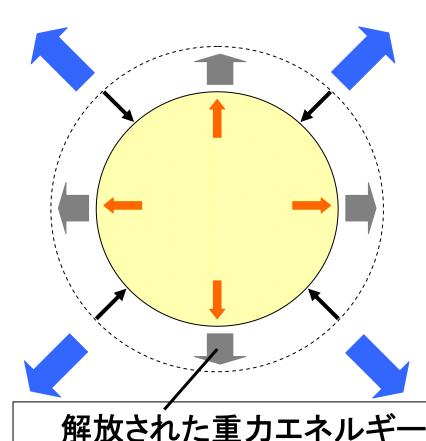
エネルギーはすべて核反応


 $|||| \varepsilon_n \rho dv \approx 0.1 M \varepsilon_n$ を仮定して

$$L_n = 0.1 \varepsilon_n M \cdot \cdot \cdot \circ$$

•主系列星の半径の計算法

太陽			
solar mass M [1.9891E+33g]	光度L [erg/s]	有効温度Te [K]	半径R [cm]
M	3.85E+33	5780	6.96E+10
計算結果			
solar mass M [1.9891E+33g]	光度L [erg/s]	有効温度Te[K]	半径R [cm]
0.6M	3.25E+32	3620	5.33E+10
0.8M	1.39E+33	5050	5.65E+10
M	4.30E+33	6440	5.93E+10
1.3M	1.34E+34	8190	6.57E+10
1.6M	3.06E+34	9440	7.43E+10
2M	7.63E+34	10900	8.78E+10
3M	3.23E+35	13300	1.20E+11
4M	8.56E+35	15200	1.51E+11
5M	1.80E+36	16700	1.81E+11
6M	3.31E+36	18000	2.11E+11
7M	5.55E+36	19800	2.40E+11
8M	8.75E+36	20300	2.69E+11
9M	1.32E+37	21400	2.97E+11
10M	1.91E+37	22400	3.26E+11



●核反応率について

solar mass M [1.9891E+33g]	T[K]	Ecno [erg/g]	Epp [erg/g]
0.6M	9.21E+06	0.000079	2.91
0.8M	1.16E+07	0.016	9.26
M	1.38E+07	0.69	20.90
1.3M	1.62E+07	15.9	37.60
1.6M	1.75E+07	59.6	42.30
2M	1.86E+07	150	41.30
3M	2.04E+07	508	34.30
4M	2.16E+07	1050	28.60
5M	2.25E+07	1790	24.50
6M	2.32E+07	2750	21.40
7M	2.38E+07	3970	19.10
8M	2.42E+07	5480	17.20
9М	2.46E+07	7330	15.70
10M	2.49E+07	9570	14.40

②前主系列星から主系列星まで

エネルギー保存の式
$$\frac{dL_r}{dM_r} = \varepsilon_n + \varepsilon_g$$
 より、

$$\mathcal{E}_g = \mathcal{E}_r - \mathcal{E}_n \qquad \left(\mathcal{E}_r = \frac{L}{M}\right)$$

重力収縮=エントロピー の時間変化

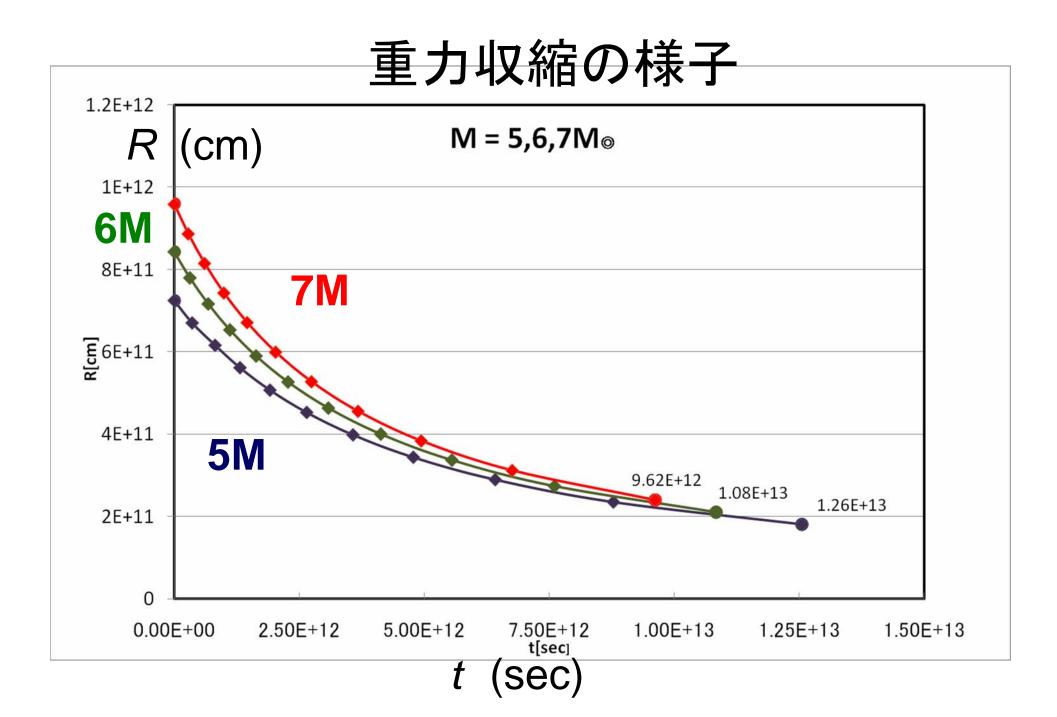
$$\varepsilon_g = -T \frac{ds}{dt}$$

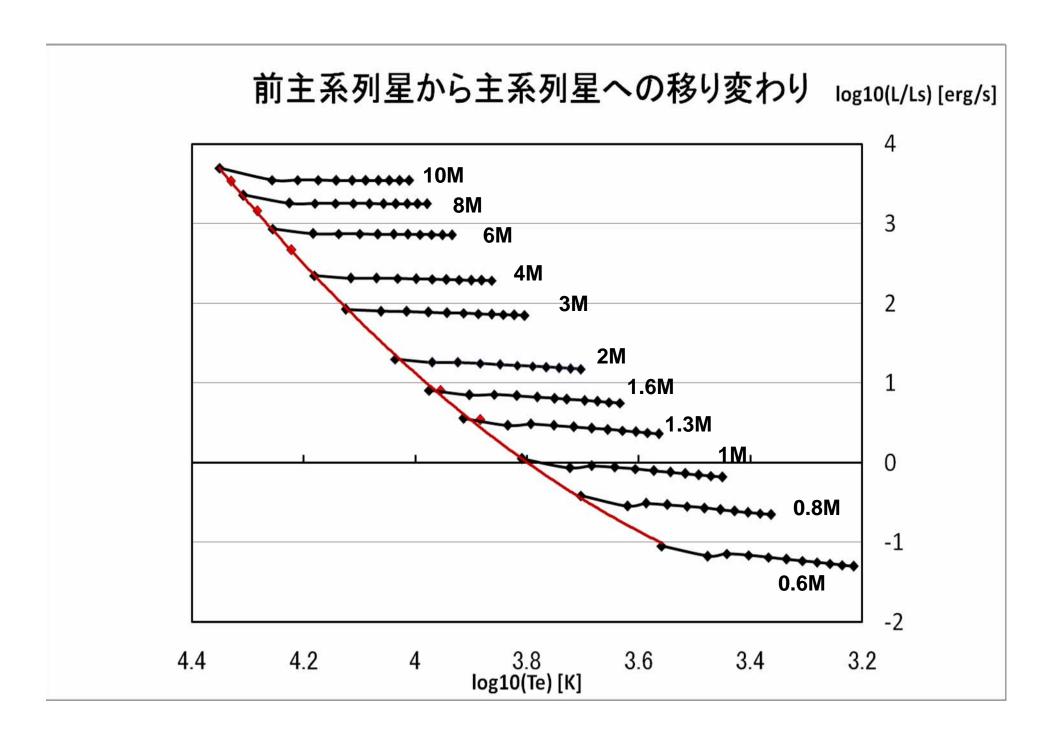
$$\therefore T \frac{ds}{dt} = \varepsilon_n - \varepsilon_r$$

$$T\frac{dS}{dt} = \varepsilon_n - \varepsilon_r$$
 について、半径 r_k から r_{k+1} まで収縮するとき

$$\sqrt{T_{k+1}T_k}\frac{S_{k+1}-S_k}{\Delta t}=\frac{1}{2}\left(\varepsilon_{n,k+1}-\varepsilon_{r,k+1}+\varepsilon_{n;k}-\varepsilon_{r,k}\right)$$

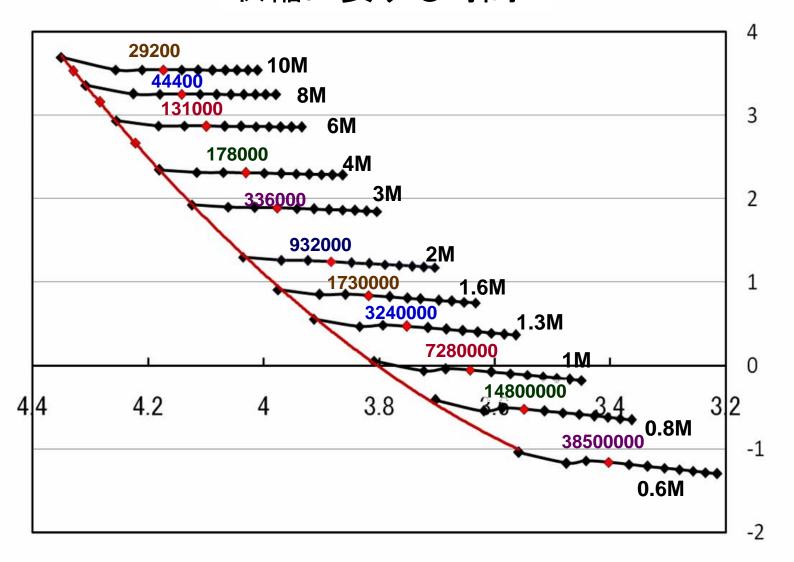
収縮に要する時間 Atが近似的に得られる。

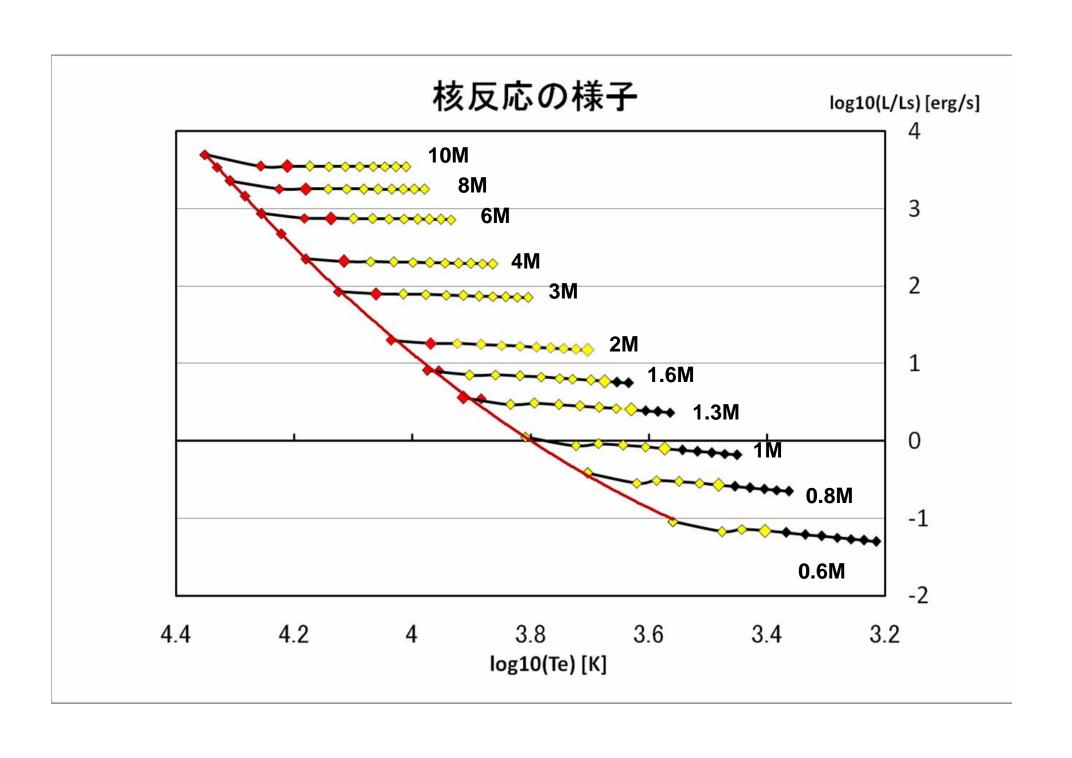

$$S = S_0 + \frac{1}{\mu} R \log \sqrt{\frac{T^{\frac{5}{2}}}{p}} + \frac{aT^4}{3}$$
理想気体 黑体放射項


•計算条件

収縮半径 $R_1 = R_{ms}$ 収縮開始半径 $R_2 = 4R_{ms}$

 $R_1 \angle R_2$ の間隔を10分割して Δ tを計算し、 収縮に要する時間を求める。


計算結果				
solar mass [1.9891E+33g]	初期値R1 [cm]	収束値R2 [cm]	t [s]	t(年)
0.6M	1.93E+11	5.33E+10	3.67E+15	116000000
0.8M	2.06E+11	5.65E+10	1.44E+15	45700000
M	2.37E+11	5.93E+10	7.51E+14	23800000
1.3M	2.63E+11	6.57E+10	3.36E+14	10600000
1.6M	2.97E+11	7.43E+10	1.83E+14	5800000
2M	3.51E+11	8.78E+10	9.68E+13	3070000
3M	4.80E+11	1.20E+11	3.53E+13	1120000
4M	6.04E+11	1.51E+11	1.83E+13	580000
5M	7.25E+11	1.81E+11	1.26E+13	399000
6M	8.43E+11	2.11E+11	1.08E+13	342000
7M	9.59E+11	2.40E+11	9.62E+12	305000
8M	1.07E+12	2.69E+11	4.16E+12	132000
9M	1.19E+12	2.97E+11	3.28E+12	104000
10M	1.30E+12	3.26E+11	2.65E+12	84000



収縮に要する時間

log10(L/Ls) [erg/s]

log10(Te) [K]

●まとめ

- 星は前主系列星から主系列星へと移り変わる際、 光度をほぼ一定に保ったまま収縮していく (ヘニエイ収縮)
- ●質量が大きくなるほど収縮時間は短くなる
- •収縮率は主系列星に近づくにつれて小さくなる