ミリ波・サブミリ波で検証する 原始惑星系円盤TW HyaとHD 163296のダスト分布モデル

宇宙物理学研究室 千葉めぐみ

- ・研究背景・目的(原始惑星系円盤、電波観測)
- ・計算方法(輻射輸送方程式、円盤モデル)
- ・結果(3波長での輝度分布、観測との比較)
- ・考察(分布を決める条件)
- ・まとめ

研究背景・目的 A1型星

A1型星 HD 163296の見え方

原始惑星系円盤

- ・若い恒星(原始星)の周りを回転 する円盤状のガスや塵(ダスト)
- ・惑星の母体

1波長でのダスト分布モデルが研究されている

→・1波長で再現できるモデルは 他の波長の放射強度も再現可能か? ・ダスト分布を決める条件は?

2天体を3波長で検証

天体:TW Hya, HD 163296 波長:2.1 mm, 1.3 mm, 0.87 mm

計算方法
輻射輸送理論
観測される量(放射強度):

$$I_{v}[J \cdot s^{-1} \cdot m^{-2} \cdot Sr^{-1} \cdot Hz^{-1}]$$

輻射輸送方程式
 $\frac{dI_{v}}{ds} = -\kappa_{v}\rho(I_{v} - B_{v}(T))$

未知数
温度 $T(r,\varphi,z)$
密度 $\rho(r,\varphi,z)$
オパシティ κ_{v}
温度 $-\bar{\kappa}_{v}\rho ds$ + $B_{v}(T)$ { $1 - e^{-\int \kappa_{v}\rho ds}$ }

計算方法	モデル名	温度 T	密度 ρ	オパシティ κ _ν
	Kataoka(C)	r	r,z	carbon amorphous
	Kataoka(Si)			
	Isella	r,z	r,z	astronomical silicates
	Gregorio (de Gregorio- Monsalvo)		r,z	
RADM		国立 ホー.	天文台の片岡章雅さんの ムページを参考に	
Pythonで輻射輸送計算を行うため のソフト				密度・温度モデル オパシティデータ 山心星の情報
図を表示			中心至の原報 望遠鏡のビームサイズ など 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	

0.0

r[au]

$$\boldsymbol{\Sigma}_{\mathbf{r},\boldsymbol{i}}(\mathbf{r}) = \boldsymbol{\Sigma}_{\boldsymbol{c}\boldsymbol{i}} \exp\left(-\frac{(r-\boldsymbol{r}_{\boldsymbol{c}\boldsymbol{i}})^2}{2\boldsymbol{w}_{\boldsymbol{i}}^2}\right)$$

- ・ダストの**成分と大きさ**によって
- 異なる
- ・単位 [cm²/g]
- ・周波数に依存する
- ・実際のダストの成分や大きさは 明確に分かっていない

使用したオパシティ

無定形炭素 carbon amorphous Preibisch+1993

半径1 mm の astronomical silicates Draine +2003 Gregorio+2013にてHD 163296のモデルに使用

Si, C などからなる 固体微粒子 最大半径 0.1 μm~数 mm

考察 円盤は不透明?

光学的厚み(透明度合いを決める量) τ_{ν} は、 円盤が薄いとき $\tau_{\nu} = \int \kappa_{\nu} \rho(r, z) ds \approx \kappa_{\nu} \Sigma(r) / \cos \theta_{incl}$

波長 $\lambda = c / \nu \kappa_{2.1 \text{ mm}} < \kappa_{1.3 \text{ mm}} < \kappa_{0.87 \text{ mm}}$ 輻射輸送方程式の解は $\tau_{\nu} < 1$ のとき

$$I_{\nu}(r) = B_{\nu}(T(r))\{1 - e^{-\tau_{\nu}}\} \approx B_{\nu}(T(r))\tau_{\nu}$$
$$\approx B_{\nu}(T(r))\kappa_{\nu}\Sigma(r)$$

 $h\nu/kT \ll 1 \mathcal{O}$ とき $B_{\nu}(T(r)) \propto \frac{1}{e^{h\nu/kT(r)} - 1} \approx \frac{kT(r)}{h\nu} \propto T(r)$

 $I_{\nu}(r) \propto T(r) \cdot \Sigma(r) \cdot \kappa_{\nu}$

まとめ

波長1.3 mmで原始惑星系円盤を再現するモデルは、 0.87 mmと2.1 mmで再現可能か? 再現可能な場合、どのようなダスト分布か?

4モデルの中では**Gregorioモデル**が再現可能 ・光学的に薄い条件で、 $T(r) \cdot \Sigma(r)$ が一定 条件を満たす範囲で自由度がある

オパシティの比 κ_{2.1 mm}: κ_{1.3 mm}: κ_{0.87 mm}
 HD 163296で 0.8 : 1 : 1.1
 比は求められるが、物質の種類は決定できない
 半径依存性の考慮が必要な可能性がある