機械学習を用いた 重力レンズ収束場マップのノイズ除去

宇宙物理学研究室 青山 翔平

1. 重カレンズ

重力によって光の経路が曲げられて、見え方が変化

収束場は質量分布の情報を視線方向に投影したもの

$$\kappa(\boldsymbol{\theta}) \propto \int_0^{x_s} dx \frac{S_K(x_s - x)}{S_K(x_s)}$$

 δ :密度揺らぎ, $\bar{\rho}$:平均密度, $S_{K}(x)$:曲率を考慮したxまでの距離,a:スケール因子

 $\gamma_2(>0)$

NASA https://esahubble.org/images/heic1106c/

 $\frac{dS}{dx} S_{K}(x) = a[t(x)]^{2} \bar{\rho}[t(x)] \delta[x, \theta, t(x)]$

3

銀河の観測

 ϵ_{source} によりシェイプノイズ(ϵ_N)が現れる

1. 重カレンズ

収束場にも同様にシェイプノイズが現れる

このシェイプノイズ(x,)を取り除きたい

ノイズを除去する手法

・機械学習を適用

機械学習が有効 (Shirasaki+2019)

- $\kappa_{\rm obs} = \kappa_{\rm N} + \kappa$

. κ_{obs} にフィルター(Wiener filter など)を適用

4

2. 研究目的

Masked Input

GAN

Palette (拡散モデル)

Saharia+2022

5

先行研究でのモデル GAN(敵対的生成ネットワーク)

GANよりも優れた画像生成モデル Palette Diffusion model (拡散モデル)

収束場画像に適用

シェイプノイズを精度よく除去できるか

Masked Input

GAN

Saharia+2022

Palette (拡散モデル)

3. 機械学習モデル

GAN (敵対的生成ネットワーク)

損失関数 (Isola+2017)

- $L_{\text{GAN}} = \min_{G} \max_{D} \left\{ L_1(G, D) + \lambda L_2(G) \right\}$
- G(生成子): 偽画像を生成 D(識別子):本(偽)物か判別 (1↔ 0)
- 損失関数に従って精度の良い生成子、識別子を作成
 - $L_1(G,D) = \mathbb{E}_{x,y} \log D(x,y) + \mathbb{E}_{x,z} \log\{1 D(x,G(x,z))\}$

$$L_2(G) = \mathbb{E}_{x,y,z} \sum_{\text{pixels}} |y - G(x,z)|$$

6

z: ランダムノイズ

x:入力画像

y:教師画像

 y_0 (教師画像) x(入力)

 y_0^{out} (出力)

IllustrisTNG流体シミュレーションの密度分布 光の曲がりを計算

ヤコビ行列A (収束場к)を計算

 θ :見かけの角度, β :実際の角度

8 シミュレーション結果による収束場マップの作成 (Osato+2021)

 $A = \begin{pmatrix} \frac{\partial \beta_i}{\partial \theta_i} \end{pmatrix} = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$

収束場マップを40,000枚作成 そのうち4,000枚を使用

4. 手法 観測収束場マップの作成

シェイプノイズ $P(\epsilon_N)$ 擬似シェイプノイズを加える

 $P(\epsilon_N) = \frac{1}{\pi \sigma_N^2} \exp\left(-\frac{\epsilon_N^2}{\sigma_N^2}\right),$

K

数値はすばる望遠鏡HSCサーベイから予想されるものを用いた

9

 $\kappa_{\rm obs}$

$$\sigma_N^2 = \frac{\sigma_e^2}{n_{\text{gal}}\theta_{\text{pix}}^2}$$

 $\sigma_{\epsilon}^2 = (0.35)^2$: 光源楕円率の分散, $n_{gal} = 20 [arcmin^{-2}]$: 銀河の数, $\theta_{pix} = \theta/N_{grid} = 2.5/256 [degree/pixel]$: 画素サイズ

4. 手法 スムージング

K

フィルター関数 小スケールのノイズを抑えるフィルター関数

 θ^2 1 $W(\theta) = \frac{1}{\pi \theta_G^2} \exp(\theta)$ $\overline{ heta_G^2}$,

 $\kappa_{\rm obs}$

 $\theta_G = 1.5 [\operatorname{arcmin}] : \mathcal{A} = \mathcal{A}$ 銀河団(z~1)が観測できる値

先行研究 (GAN)	スムージング	入出
smooth	\bigcirc	$\kappa_{\rm obs}$ –
direct	\bigcirc	$\kappa_{\rm obs}$ -
No smooth	×	$\kappa_{\rm obs}$ –

3600枚 **400**枚

本研究では

4000枚

・ <u>smooth での Palette(拡散モデル) と GAN の比較</u> • スムージングの有無、出力の違いによる結果の変化

5. 結果 パワースペクトルについて

パワースペクトル C_{ℓ} はフーリエ空間の二点相関関数 $\langle \tilde{\kappa}(\ell) \tilde{\kappa}'(\ell) \rangle$ により表される

5. 結果 peak, minimaについて

Peak → 周り(2	4	2	1	1
minima → 周りの	6	1	2	7	1
Peak	4	3	6	3	5
$\rightarrow (S/N)$	1	2	8	0	4
minim	٦	-1	5	1	1
	2	4	2	-1	3

14

- の8個のセルよりも値が大きいκの値をカウント
- a の8個のセルよりも値が<mark>小さい</mark>κの値をカウント
- Dκの方向に質量が多く存在 $\equiv \kappa / \sigma_{noise} > 4$ の数は
- クマターハローの数に関係
- aはその方向に質量が少ない
- 統計量 peak, minimaは宇宙論パラメータや宇宙の構造決定に関与

5. 結果 smoothでのモデル比較 パワースペクトル input(smooth) 10^{-4} ・ノイズの小さい領域では GAN smooth input Palette smooth Paletteの方が精度が良い $\ell(\ell + 1)/(2\pi)C_{\ell}$ ・ノイズ優勢領域では どちらのモデルも精度が悪い 画像ごとの統計量の差 Palette C^i \ldots $-C^i$ $(ar[C_{\ell}]^{1/2})$ GAN 0 0に近いほどinputに近い / ΔC_{ℓ} -110³ 104

$$\frac{C_{\text{model}}}{\text{std}[C_{\text{input}}]}, i = 1, 2, \dots, 400$$

PDF, minima ともにPaletteの方がすぐにinputに近づいている(peakも同様)

smoothでのPDF, minimaのモデル比較

16

NoSmooth

出力の違い, スムージングの有無による変化

direct

Palette directは基準の場合と大きな差は見られない

6. まとめ

- ・観測した収束場画像にはシェイプノイズが含まれる
- シェイプノイズを取り除く手法として機械学習が有効
- ・先行研究(スムージング有, $\kappa_{obs} \rightarrow \hat{\kappa}_{N}$)と同じ入出力での比較では,
- 拡散モデルの方が精度が良い結果になった これから
 - ・学習モデルの調整や、学習データを増やすなど進めていく
 - 他の統計量で検証 (3点相関関数など)

・学習モデルとして 先行研究では敵対的生成ネットワーク(GAN), 本研究では拡散モデル(diffusion model) を使用

・GAN NoSmoothが平均では精度が良いが, 画像ごとのズレが大きい

smooth

PDF

smooth

peak

minima

direct

PDF

direct

peak

minima

NoSmooth

PDF

NoSmooth

peak

フーリエ空間において収束場と歪み場の関係

 $\tilde{\kappa} = \frac{1}{2}(\ell_1^2 + \ell_2^2)\varphi, \qquad \tilde{\gamma}_1 = \frac{1}{2}$

レンズポテンシ

レンズポテンシャルを消去して $\tilde{\kappa}(\boldsymbol{\ell}) = \frac{\ell^2}{(\ell_1 + i\ell_2)^2} \tilde{\gamma}(\boldsymbol{\ell})$

 $\gamma \rightarrow \kappa$ に変換可能

$$= \frac{1}{2} (\ell_1^2 - \ell_2^2) \varphi, \qquad \tilde{\gamma}_2 = \ell_1 \ell_2 \varphi,$$

イヤル:
$$\varphi(\boldsymbol{\theta}) = \frac{2}{c^2 S_K(x_s)} \int_0^{x_s} dx \frac{S_K(x_s - x)}{S_K(x)} \Phi(\boldsymbol{\theta}, x, t)$$