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toroidal磁場をともなった相対論的Jetの伝搬(color :density)

left : 2D-axisymmetric, right : 3D Cartesian

Mignone et al.
(2010)
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Figure 1. Volume renderings of the passive scalar distributions for the high-resolution 3D run (left-hand panel) and 2D axisymmetric case (right-hand panel)
at t = 710.

right-hand panel, the rendering of an equivalent 2D axisymmetric
simulation with the same parameters. The picture (in the right-hand
panel) clearly indicates the presence of a nose cone structure typi-
cal of 2D high Poynting flux jets (Clarke, Norman & Burns 1986;
Lind et al. 1989; Komissarov 1999; Leismann et al. 2005), origi-
nating from the amplification at the terminal shock of the toroidal
field component which then confines the jet material and prevents
it from freely flowing in the cocoon. In three dimensions, however,
this structure becomes unstable and does not form leading to a very
different asymmetric morphology. In following the jet propagation,
we observe that its trajectory becomes progressively more curved,
moving away from the longitudinal y-axis. This effect becomes
more pronounced at the jet head and can be attributed to the pres-
ence of CD kink instabilities. Moreover, the backflowing material
forms a very asymmetric cocoon as a result of the changes in the
direction of the jet head. In Fig. 2, representing the pressure distri-
bution, it is possible to observe two regions of enhanced pressure

Figure 2. Volume renderings of the thermal pressure distributions at
t = 710 for the high-resolution 3D run.

in the bow shock. Comparing the tracer and pressure distributions,
we can identify these areas as the points where the jet is more
strongly deflected. The asymmetric backflow appears to be quite
pronounced, reaching relatively high velocities up to 0.9c.

The displacement of the beam from the longitudinal axis plays a
fundamental role in the jet morphology, and it is evaluated, at each
position along the jet, by the quantity r̄(y) =

√
x̄2 + z̄2, where

x̄(y) =
∫

xQ dx dz∫
Q dx dz

, z̄(y) =
∫

zQ dx dz∫
Q dx dz

, (4)

where Q can be any flow quantity. Choosing Q = γχ , where χ = 1
for γ > 1.5 and χ = 0 otherwise, gives a measure of the distance of
the Lorentz factor centroid from the axis. Likewise, we can quantify
the jet density barycentre by choosing Q = ργ f . In Fig. 3, we plot
both the Lorentz factor and density centroids as functions of y. Solid,
dashed and dotted lines refer, respectively, to the high-resolution,
low-resolution and non-magnetized case with the same parameters
(Lorentz factor, density ratio and Mach numbers). Simulation times
have been chosen so that the jets reach approximately the same
distance, ∼70 radii. Both the low- and high-resolution cases show
moderate displacements up to ∼40 jet radii followed by a strong
increase soon after. The effect is more pronounced in the high-
resolution case, eventually reaching maximum values in excess of
10. On the contrary, no significant deviations are seen in the purely
hydro case and the beam propagates very close to the initial axis.

Fig. 4 represents the distribution of the jet mass fraction moving
at a certain value of γβ at the end of the simulation when the jet
has travelled approximately 70 beam radii. Both low (top panel)
and high (bottom panel) resolution cases are shown. We use the
four-velocity (instead of the Lorentz factor) to avoid compression
of the scale close to γ = 1, i.e. at low velocities. The legend on the
right gives the corresponding value of γβ for each colour. As an
illustrative example, one can see that at y = 15, the mass fractions
moving with γβ > 6, γβ ∈ [5, 6], γβ ∈ [4, 5], γβ ∈ [3, 4] and
γβ < 3 are, respectively, 10 per cent, 10 per cent, 20 per cent,
25 per cent and 35 per cent. Focusing on the high-velocity part of
the distribution, we can observe the presence of material moving
at γ ∼ 10 all along the jet (red spots close to the y-axis). The
behaviour of the low-resolution case, shown in the upper panel,

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 402, 7–12

3D RMHD simulations of jets 9

Figure 1. Volume renderings of the passive scalar distributions for the high-resolution 3D run (left-hand panel) and 2D axisymmetric case (right-hand panel)
at t = 710.

right-hand panel, the rendering of an equivalent 2D axisymmetric
simulation with the same parameters. The picture (in the right-hand
panel) clearly indicates the presence of a nose cone structure typi-
cal of 2D high Poynting flux jets (Clarke, Norman & Burns 1986;
Lind et al. 1989; Komissarov 1999; Leismann et al. 2005), origi-
nating from the amplification at the terminal shock of the toroidal
field component which then confines the jet material and prevents
it from freely flowing in the cocoon. In three dimensions, however,
this structure becomes unstable and does not form leading to a very
different asymmetric morphology. In following the jet propagation,
we observe that its trajectory becomes progressively more curved,
moving away from the longitudinal y-axis. This effect becomes
more pronounced at the jet head and can be attributed to the pres-
ence of CD kink instabilities. Moreover, the backflowing material
forms a very asymmetric cocoon as a result of the changes in the
direction of the jet head. In Fig. 2, representing the pressure distri-
bution, it is possible to observe two regions of enhanced pressure

Figure 2. Volume renderings of the thermal pressure distributions at
t = 710 for the high-resolution 3D run.

in the bow shock. Comparing the tracer and pressure distributions,
we can identify these areas as the points where the jet is more
strongly deflected. The asymmetric backflow appears to be quite
pronounced, reaching relatively high velocities up to 0.9c.

The displacement of the beam from the longitudinal axis plays a
fundamental role in the jet morphology, and it is evaluated, at each
position along the jet, by the quantity r̄(y) =

√
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, z̄(y) =
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where Q can be any flow quantity. Choosing Q = γχ , where χ = 1
for γ > 1.5 and χ = 0 otherwise, gives a measure of the distance of
the Lorentz factor centroid from the axis. Likewise, we can quantify
the jet density barycentre by choosing Q = ργ f . In Fig. 3, we plot
both the Lorentz factor and density centroids as functions of y. Solid,
dashed and dotted lines refer, respectively, to the high-resolution,
low-resolution and non-magnetized case with the same parameters
(Lorentz factor, density ratio and Mach numbers). Simulation times
have been chosen so that the jets reach approximately the same
distance, ∼70 radii. Both the low- and high-resolution cases show
moderate displacements up to ∼40 jet radii followed by a strong
increase soon after. The effect is more pronounced in the high-
resolution case, eventually reaching maximum values in excess of
10. On the contrary, no significant deviations are seen in the purely
hydro case and the beam propagates very close to the initial axis.

Fig. 4 represents the distribution of the jet mass fraction moving
at a certain value of γβ at the end of the simulation when the jet
has travelled approximately 70 beam radii. Both low (top panel)
and high (bottom panel) resolution cases are shown. We use the
four-velocity (instead of the Lorentz factor) to avoid compression
of the scale close to γ = 1, i.e. at low velocities. The legend on the
right gives the corresponding value of γβ for each colour. As an
illustrative example, one can see that at y = 15, the mass fractions
moving with γβ > 6, γβ ∈ [5, 6], γβ ∈ [4, 5], γβ ∈ [3, 4] and
γβ < 3 are, respectively, 10 per cent, 10 per cent, 20 per cent,
25 per cent and 35 per cent. Focusing on the high-velocity part of
the distribution, we can observe the presence of material moving
at γ ∼ 10 all along the jet (red spots close to the y-axis). The
behaviour of the low-resolution case, shown in the upper panel,
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we can identify these areas as the points where the jet is more
strongly deflected. The asymmetric backflow appears to be quite
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where Q can be any flow quantity. Choosing Q = γχ , where χ = 1
for γ > 1.5 and χ = 0 otherwise, gives a measure of the distance of
the Lorentz factor centroid from the axis. Likewise, we can quantify
the jet density barycentre by choosing Q = ργ f . In Fig. 3, we plot
both the Lorentz factor and density centroids as functions of y. Solid,
dashed and dotted lines refer, respectively, to the high-resolution,
low-resolution and non-magnetized case with the same parameters
(Lorentz factor, density ratio and Mach numbers). Simulation times
have been chosen so that the jets reach approximately the same
distance, ∼70 radii. Both the low- and high-resolution cases show
moderate displacements up to ∼40 jet radii followed by a strong
increase soon after. The effect is more pronounced in the high-
resolution case, eventually reaching maximum values in excess of
10. On the contrary, no significant deviations are seen in the purely
hydro case and the beam propagates very close to the initial axis.

Fig. 4 represents the distribution of the jet mass fraction moving
at a certain value of γβ at the end of the simulation when the jet
has travelled approximately 70 beam radii. Both low (top panel)
and high (bottom panel) resolution cases are shown. We use the
four-velocity (instead of the Lorentz factor) to avoid compression
of the scale close to γ = 1, i.e. at low velocities. The legend on the
right gives the corresponding value of γβ for each colour. As an
illustrative example, one can see that at y = 15, the mass fractions
moving with γβ > 6, γβ ∈ [5, 6], γβ ∈ [4, 5], γβ ∈ [3, 4] and
γβ < 3 are, respectively, 10 per cent, 10 per cent, 20 per cent,
25 per cent and 35 per cent. Focusing on the high-velocity part of
the distribution, we can observe the presence of material moving
at γ ∼ 10 all along the jet (red spots close to the y-axis). The
behaviour of the low-resolution case, shown in the upper panel,
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in the bow shock. Comparing the tracer and pressure distributions,
we can identify these areas as the points where the jet is more
strongly deflected. The asymmetric backflow appears to be quite
pronounced, reaching relatively high velocities up to 0.9c.

The displacement of the beam from the longitudinal axis plays a
fundamental role in the jet morphology, and it is evaluated, at each
position along the jet, by the quantity r̄(y) =

√
x̄2 + z̄2, where
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∫

xQ dx dz∫
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, z̄(y) =
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, (4)

where Q can be any flow quantity. Choosing Q = γχ , where χ = 1
for γ > 1.5 and χ = 0 otherwise, gives a measure of the distance of
the Lorentz factor centroid from the axis. Likewise, we can quantify
the jet density barycentre by choosing Q = ργ f . In Fig. 3, we plot
both the Lorentz factor and density centroids as functions of y. Solid,
dashed and dotted lines refer, respectively, to the high-resolution,
low-resolution and non-magnetized case with the same parameters
(Lorentz factor, density ratio and Mach numbers). Simulation times
have been chosen so that the jets reach approximately the same
distance, ∼70 radii. Both the low- and high-resolution cases show
moderate displacements up to ∼40 jet radii followed by a strong
increase soon after. The effect is more pronounced in the high-
resolution case, eventually reaching maximum values in excess of
10. On the contrary, no significant deviations are seen in the purely
hydro case and the beam propagates very close to the initial axis.

Fig. 4 represents the distribution of the jet mass fraction moving
at a certain value of γβ at the end of the simulation when the jet
has travelled approximately 70 beam radii. Both low (top panel)
and high (bottom panel) resolution cases are shown. We use the
four-velocity (instead of the Lorentz factor) to avoid compression
of the scale close to γ = 1, i.e. at low velocities. The legend on the
right gives the corresponding value of γβ for each colour. As an
illustrative example, one can see that at y = 15, the mass fractions
moving with γβ > 6, γβ ∈ [5, 6], γβ ∈ [4, 5], γβ ∈ [3, 4] and
γβ < 3 are, respectively, 10 per cent, 10 per cent, 20 per cent,
25 per cent and 35 per cent. Focusing on the high-velocity part of
the distribution, we can observe the presence of material moving
at γ ∼ 10 all along the jet (red spots close to the y-axis). The
behaviour of the low-resolution case, shown in the upper panel,
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右側2つのパネルはJet方向の計算領域を広くとっている
Mizuno et al.
(2012)

適切な座標系&計算領域The Astrophysical Journal, 757:16 (14pp), 2012 September 20 Mizuno et al.
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Figure 7. Three-dimensional density isosurface with a transverse slice at z = 0 with constant helical pitch for Ω0 = 2 (a,b), 4 (c,d), and 6 (e,f). Color shows the
logarithm of the density with solid magnetic field lines. In this figure, the dependence of the global structure of instability on the angular rotation is shown.
(A color version of this figure is available in the online journal.)

also in relativistic flows (Lyubarskii 1999).7 Our simulations
indeed show a decrease of the unstable wavelength with de-
creasing pitch.

7 In static magnetically dominated configurations, the hoop stress is balanced
by the pressure of the poloidal field, therefore the poloidal and toroidal
components of the magnetic field should be comparable, at least in the core
where the field is maximal (at the periphery, the toroidal field itself could
become force-free, Bφ ∝ 1/r , therefore the pitch could be small there, like in
the configuration considered by Appl et al. (2000)). Therefore, the pitch, as
well as the wavelength of the unstable perturbations, could not be less than the
core radius in this case. In relativistic flows, the toroidal field could be larger
than the poloidal because the hoop stress could be nearly balanced by the
electric force; then, the pitch could be less than the jet radius. In highly
relativistic jets, the toroidal field significantly exceeds the poloidal one in the
lab frame; therefore, the wavelength of unstable perturbations are small, in the
lab frame, as compared with the jet radius. This may be thought of as a
relativistic contraction of unstable loops.

Figure 7 shows three-dimensional density isosurfaces and
Figure 8 shows two-dimensional images of the xz-plane at y = 0
for the constant pitch cases for the angular velocity amplitudes
Ω0 = 2, 4, and 6. In the Ω0 = 2 case, the behavior of the
growing kink in the linear and nonlinear phase is very similar
to that in the Ω0 = 1 case. In both cases, only the n = 1 kink
mode wavelength grows. The propagation speed of the kink
is ∼0.15c and slightly slower than the maximum axial drift
speed of !0.25c. In the Ω0 = 4 case, both n = 1 and n = 2
kink mode wavelengths grow (see Figures 7(c) and 8(c)). This
is because the pitch decreases with the increasing Ω and the
shorter n = 2 wavelength is now unstable. In the nonlinear
phase, only the n = 1 kink mode wavelength is excited far
from the axis where the pitch is larger. The propagation speed
of the kink is ∼0.35c and the initial maximum axial drift speed
is !0.5c. In the case Ω0 = 6, one can also see n = 1 and n = 2
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Figure 9. Three-dimensional density isosurface with a transverse slice at z = 0 for α = 1 with Ω0 = 2 (a,b), and 4 (c,d) in a longer simulation box (cases lg). Color
shows the logarithm of the density with solid magnetic field lines.
(A color version of this figure is available in the online journal.)

times, even though two wavelengths were excited initially in
the shorter box. Here, the difference occurs because the shorter
simulation box only allowed the n = 2 wavelength to grow
near to the axis. These differences serve to show how important
the coupling of multiple wavelengths can be to the long-term
development of the instability in the nonlinear stage, and we
see that coupling between multiple wavelengths can lead to
disruption of cylindrical jet structure in the nonlinear stage.

3.2. Dependence on Transverse Poloidal
Magnetic Field Distribution

According to the linear theory of the kink instability in
relativistic force-free jets, the instability growth rate decreases
with decreasing outward gradient of the poloidal magnetic field
and becomes zero when the poloidal field is homogeneous
(Istomin & Pariev 1996; Lyubarskii 1999). In order to study
the influence of the transverse poloidal magnetic field profile,
we have performed simulations with four different poloidal field
profile parameters, α. We choose α ! 1 which leads to increase
in the pitch, P, because it is expected that in jets, the magnetic
field lines are less tightly wrapped with radius.

A density isosurface for α = 0.75, 0.5, and 0.35 with Ω0 = 4
is shown in Figure 10. For α = 0.75, a helical density structure
with the n = 2 kink mode wavelength develops near the axis by
tc = 60. In the nonlinear phase, some expanding helical density
structure associated with the n = 1 wavelength is seen at large
radius, but cylindrical density structure remains near the axis.
The evolution is similar to the α = 1 case but the evolution time

is longer. For α = 0.5, helically twisted density structure with
the n = 2 wavelength is clearly seen around the transition from
the linear to the nonlinear phase. In the nonlinear phase, the
helical density structure slowly expands radially. For α = 0.35,
helically twisted density structure does not expand significantly
in the nonlinear phase. Thus, our simulations indicate that for
smaller α, the CD kink instability can grow only near axis and
nonlinear growth is suppressed. We note that smaller α cases
have stronger magnetic fields and faster initial rotation. The
faster rotation near the axis creates some numerical noise near
the axis at early simulation times. However, this numerical noise
does not affect our simulation results.

Figure 11 shows the evolution of the volume-averaged rela-
tivistic energies determined within a cylinder of radius R/L !
2.0(R ! 8 R0) for α = 0.75, 0.5, and 0.35 with Ω0 = 4. For
α = 0.75 (dotted lines), the evolution profile is similar to that
of the α = 1 case, although the scaling is different. Compared
to the α = 1 case, the transition from the linear to the nonlinear
phase occurs slightly later (tc ! 105). For α = 0.5 (dashed
lines), the growth rate is much lower than for the α = 1 case.
The linear growth phase lasts until tc ! 160. In the nonlinear
phase, kinetic and magnetic energies do not decrease. This in-
dicates nonlinear stabilization and structure developed initially
is maintained in the nonlinear stage. For α = 0.35 (dash-dotted
lines), transition to the nonlinear phase happens at a lower max-
imum value of Ekin,xy than for the α = 0.5 case. The growth
rate in the α = 0.35 case is lower than that in the α = 0.5 case.
These simulations with different transverse poloidal magnetic
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by the pressure of the poloidal field, therefore the poloidal and toroidal
components of the magnetic field should be comparable, at least in the core
where the field is maximal (at the periphery, the toroidal field itself could
become force-free, Bφ ∝ 1/r , therefore the pitch could be small there, like in
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core radius in this case. In relativistic flows, the toroidal field could be larger
than the poloidal because the hoop stress could be nearly balanced by the
electric force; then, the pitch could be less than the jet radius. In highly
relativistic jets, the toroidal field significantly exceeds the poloidal one in the
lab frame; therefore, the wavelength of unstable perturbations are small, in the
lab frame, as compared with the jet radius. This may be thought of as a
relativistic contraction of unstable loops.

Figure 7 shows three-dimensional density isosurfaces and
Figure 8 shows two-dimensional images of the xz-plane at y = 0
for the constant pitch cases for the angular velocity amplitudes
Ω0 = 2, 4, and 6. In the Ω0 = 2 case, the behavior of the
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to that in the Ω0 = 1 case. In both cases, only the n = 1 kink
mode wavelength grows. The propagation speed of the kink
is ∼0.15c and slightly slower than the maximum axial drift
speed of !0.25c. In the Ω0 = 4 case, both n = 1 and n = 2
kink mode wavelengths grow (see Figures 7(c) and 8(c)). This
is because the pitch decreases with the increasing Ω and the
shorter n = 2 wavelength is now unstable. In the nonlinear
phase, only the n = 1 kink mode wavelength is excited far
from the axis where the pitch is larger. The propagation speed
of the kink is ∼0.35c and the initial maximum axial drift speed
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times, even though two wavelengths were excited initially in
the shorter box. Here, the difference occurs because the shorter
simulation box only allowed the n = 2 wavelength to grow
near to the axis. These differences serve to show how important
the coupling of multiple wavelengths can be to the long-term
development of the instability in the nonlinear stage, and we
see that coupling between multiple wavelengths can lead to
disruption of cylindrical jet structure in the nonlinear stage.

3.2. Dependence on Transverse Poloidal
Magnetic Field Distribution

According to the linear theory of the kink instability in
relativistic force-free jets, the instability growth rate decreases
with decreasing outward gradient of the poloidal magnetic field
and becomes zero when the poloidal field is homogeneous
(Istomin & Pariev 1996; Lyubarskii 1999). In order to study
the influence of the transverse poloidal magnetic field profile,
we have performed simulations with four different poloidal field
profile parameters, α. We choose α ! 1 which leads to increase
in the pitch, P, because it is expected that in jets, the magnetic
field lines are less tightly wrapped with radius.

A density isosurface for α = 0.75, 0.5, and 0.35 with Ω0 = 4
is shown in Figure 10. For α = 0.75, a helical density structure
with the n = 2 kink mode wavelength develops near the axis by
tc = 60. In the nonlinear phase, some expanding helical density
structure associated with the n = 1 wavelength is seen at large
radius, but cylindrical density structure remains near the axis.
The evolution is similar to the α = 1 case but the evolution time

is longer. For α = 0.5, helically twisted density structure with
the n = 2 wavelength is clearly seen around the transition from
the linear to the nonlinear phase. In the nonlinear phase, the
helical density structure slowly expands radially. For α = 0.35,
helically twisted density structure does not expand significantly
in the nonlinear phase. Thus, our simulations indicate that for
smaller α, the CD kink instability can grow only near axis and
nonlinear growth is suppressed. We note that smaller α cases
have stronger magnetic fields and faster initial rotation. The
faster rotation near the axis creates some numerical noise near
the axis at early simulation times. However, this numerical noise
does not affect our simulation results.

Figure 11 shows the evolution of the volume-averaged rela-
tivistic energies determined within a cylinder of radius R/L !
2.0(R ! 8 R0) for α = 0.75, 0.5, and 0.35 with Ω0 = 4. For
α = 0.75 (dotted lines), the evolution profile is similar to that
of the α = 1 case, although the scaling is different. Compared
to the α = 1 case, the transition from the linear to the nonlinear
phase occurs slightly later (tc ! 105). For α = 0.5 (dashed
lines), the growth rate is much lower than for the α = 1 case.
The linear growth phase lasts until tc ! 160. In the nonlinear
phase, kinetic and magnetic energies do not decrease. This in-
dicates nonlinear stabilization and structure developed initially
is maintained in the nonlinear stage. For α = 0.35 (dash-dotted
lines), transition to the nonlinear phase happens at a lower max-
imum value of Ekin,xy than for the α = 0.5 case. The growth
rate in the α = 0.35 case is lower than that in the α = 0.5 case.
These simulations with different transverse poloidal magnetic
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見たい物理を再現するために・・・
①座標系を正しく選ぶ。
③広い計算領域が必要なこともある。

まとめ１
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円筒座標系磁気流体計算による
銀河円盤の長時間シミュレーション
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2013 Feb. 18-19 : 宇宙磁気流体・プラズマワークショップ@千葉大学

10Monday, February 18, 13



・MacCormack+人工粘性, 
・(Nr, Nφ, Nz)=(290, 64, 300), 0<r<56kpc, 0<φ<2π, 0<z<5kpc
・bulge, disk, haloの作る軸対称な重力ポテンシャル中で、
   静水圧平衡halo+弱円形磁場が貫くトーラス(β~100)
   トーラスにランダムな摂動を加えてスタート

初期条件
2
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r-z平面, 密度場

密度と磁力線
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・MacCormack+人工粘性, 
・(Nr, Nφ, Nz)=(290, 64, 300), 0<r<56kpc, 0<φ<2π, 0<z<5kpc
・bulge, disk, haloの作る軸対称な重力ポテンシャル中で、
   静水圧平衡halo+弱円形磁場が貫くトーラス(β~100)
   トーラスにランダムな摂動を加えてスタート

初期条件
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中心部分に
absorbing boundary
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MRI(磁気回転不安定性)による磁場の増幅
Parker不安定性による磁束浮上
要したtime step・・・数百万step以上

計算結果(途中...)
after 3.0Gyr
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銀河ダイナモ
MRI+Parker instabilityによる磁場の反転
少なくとも10回転(~2-3Gyr)以上計算しないと見えない

先行研究
The Astrophysical Journal, 764:81 (9pp), 2013 February 10 Machida et al.

(a) (b)

Figure 2. Evolutions of the mean azimuthal magnetic fields averaged in the region where 5 < !/!0 < 6, 0 ! ϕ < 2π , and 0 < z/!0 < 1 (black), and in the region
where 5 < !/!0 < 6, 0 ! ϕ < 2π , and 1 < z/!0 < 3 (gray). (a) and (b) show time evolution and radial distribution, respectively.

(a) (b)

Figure 3. (a) Radial distribution of the specific angular momentum (l = !vϕ/(!0v0)) at the equatorial plane. The black curve shows the distribution at t = 1000 t0
and the gray curve shows the initial condition. The light gray dashed line shows the position of the initial density maximum. (b) Spatial distribution of the azimuthally
averaged rotation speed at t = 1000 t0.

momentum toward the halo, the halo begins to rotate differen-
tially, as can be seen in isocontours of the azimuthally averaged
rotation speed (Figure 3(b)). Figures 3(a) and (b) show that
the azimuthal velocity vϕ is almost constant and close to v0
in the equatorial plane. The rotation period at !/!0 = a is
Prot ∼ 2πa(!0/v0) = 2πat0.

3.2. Evolution of the Magnetic Field Structure

We show the 3D structure of the mean magnetic fields in
Figure 4. The colored surfaces represent isodensity surfaces,
and the curves show magnetic field lines. Light brown curves
show field lines passing through the plane at z/!0 = 5 and
!/!0 < 1. The vertical magnetic fields around the rotation
axis are produced by the magnetic pressure-driven outflow near
the galactic center. Color on the curves depicts the direction
of the azimuthal magnetic fields. Red curves show a positive
direction of the azimuthal magnetic fields (counterclockwise
direction) and blue shows a negative direction (clockwise). The
figure indicates that the azimuthal field reverses the direction
with the radius.

Figure 4 indicates that long wavelength magnetic loops are
formed around the disk–halo interface. Therefore, we discuss
the formation mechanism of the magnetic loops. Horizontal
magnetic fields embedded in a gravitationally stratified atmo-
sphere become unstable against long wavelength undular per-
turbations. This undular mode of magnetic buoyancy instability,
called the Parker instability, creates buoyantly rising magnetic
loops (Parker 1966). Nonlinear growth of the Parker instability
in gravitationally stratified disks was studied by MHD simula-
tions by Matsumoto et al. (1988). They showed that magnetic
loops continue to rise when β < 5. In a weakly magnetized
region where β > 5, the Parker instability only drives nonlinear
oscillations (Matsumoto et al. 1990).

In differentially rotating disks, the MRI couples with
the Parker instability. The growth timescale of the non-
axisymmetric the MRI is tMRI ∼ 1/(0.1Ω) ∼ 10H/cs where
cs is the sound speed. On the other hand, the growth timescale
of the Parker instability is tPI ∼ 5H/vA ∼ 5

√
βγ /2(H/cs)

where vA and γ are the Alfvén speed and the specific heat
ratio, respectively. This timescale becomes comparable to the
growth time of the MRI when β ∼ 5. Since magnetic turbulence

4
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(a) (b)

(c) (d)

Figure 1. (a) Time evolution of the mass accretion rate at !/!0 = 2.5. The black curve shows model ASYM and the gray curve shows model PSYM. (b) Time
evolution of the plasma β averaged in the region where 2 < !/!0 < 5, |z|/!0 < 1, and 0 ! ϕ ! 2π . (c) Time evolution of the spatially averaged magnetic energy
of model ASYM. Black, dark gray, and gray denote the azimuthal component, radial component, and vertical component, respectively. (d) Time evolution of the
spatially averaged magnetic energy of model PSYM. Colors are the same as in (c). The averaged region of the magnetic energy is the same as (b).

doubled since model PSYM includes only the region above
the equatorial plane.

Figures 1(b)–(d) show the time evolution of the plasma β
and the magnetic energy of each component averaged in the
region where 2 ! !/!0 ! 5, |z|/!0 ! 1, and 0 ! ϕ ! 2π ,
respectively. It is clear that plasma β decreases in the linear stage
as the magnetic energy increases. In both models, the averaged
magnetic energy first increases exponentially. After that, it
saturates and becomes roughly constant. The time evolution
of magnetic fields is similar between model ASYM and model
PSYM. The time evolutions of the growth and saturation in
the mass accretion rate are quite similar to those of the averaged
magnetic energy. This means that the magnetic turbulence driven
by the MRI is the main cause of the angular momentum transport
which drives mass accretion. In the remaining part of this
section, we discuss the results of model ASYM.

In order to check the magnetic field structure, we analyze
the time evolution of mean azimuthal magnetic fields. The
mean fields are computed by the same method as Nishikori
et al. (2006). Figure 2(a) shows the time evolution of the mean
azimuthal magnetic fields. The black curve shows Bϕ averaged
in the region where 5 < !/!0 < 6, 0 ! ϕ ! 2π , and

0 < z/!0 < 1, and the gray curve shows Bϕ averaged in the
region where 5 < !/!0 < 6, 0 ! ϕ ! 2π , and 1 < z/!0 < 3.
Black and gray curves correspond to the disk region and halo
region, respectively. The azimuthal magnetic fields reverse their
direction on a timescale t ∼ 300t0 ∼ 1.5 Gyr. This timescale
is comparable to that of the buoyant rise of azimuthal magnetic
fields. The halo fields also reverse their directions on the same
timescale as the disk component.

The radial distribution of the mean azimuthal magnetic fields
at t = 1000 t0 are shown in Figure 2(b). Black and gray curves
show the averages in the disk (0 ! ϕ ! 2π and 0 < z/!0 < 1)
and in the halo (0 ! ϕ ! 2π and 1 < z/!0 < 3), respectively.
Since the magnetic fields in the disk become turbulent, the
direction of azimuthal magnetic fields changes frequently near
the equatorial plane. On the other hand, long wavelength
magnetic loops are formed in the halo region.

Figure 3(a) shows the radial distribution of the specific angu-
lar momentum at the equatorial plane. Although the rotation is
assumed only inside the initial torus (gray curve in Figure 3(a)),
the torus deforms its shape from a torus to a disk by redistribut-
ing angular momentum (black curve in Figure 3(a)). Since the
outflow created by the MHD-driven dynamo transports angular

3

Machida et al. (2013)

1.5Gyr
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見たい物理を再現するために・・・
③長時間計算が必要なこともある。

まとめ２
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3次元磁気流体数値実験による
渦巻き銀河の大局的磁場構造モデルの構築

中村翔, 服部誠, 森嶋隆裕(東北大学天文学専攻)

松元亮治(千葉大学理学研究科)

町田真美(九州大学理学研究院)

2013 Feb. 18-19 : 宇宙磁気流体・プラズマワークショップ@千葉大学
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3次元磁気流体数値実験による
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・MacCormack+人工粘性, 
・(Nr, Nφ, Nz)=(290, 64, 300), 0<r<56kpc, 0<φ<2π, 0<z<5kpc
・初期条件はさきほどと同じ

Numerical Setup
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密度と磁力線
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現在、誠意計算中
after 2.0Gyr
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磁場の反転(z=0面内)

Initial <Bφ> after 2.0Gyr
+- +-
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どちらが良いだろうか？
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end.
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