Global MHD Simulations of Galactic Gas Disks

Ryoji Matsumoto (Chiba University)

Global Simulators of Astrophysical Rotating Plasmas

ARPS (Astrophysical Rotating Plasma Simulator, Matsumoto et al. 1999) Coordinated Astronomical Numerical Software(CANS): product of ACT-JST project (2000-2002)

Basic Equations

$$\frac{\rho}{t} + (\rho \mathbf{v}) = 0$$

$$\rho - \frac{\mathbf{v}}{t} + \rho(\mathbf{v} \bullet) \mathbf{v} = -P + \frac{(\mathbf{v} \bullet \mathbf{B}) \times \mathbf{B}}{4\pi} + \rho \mathbf{g}$$

$$\frac{\mathbf{B}}{t} = (\mathbf{v} \times \mathbf{B}) + \eta^{2} \mathbf{B}$$

$$\frac{\rho \varepsilon}{t} + (\rho \varepsilon \mathbf{v}) + P \quad \mathbf{v} = Q_{J} + Q_{vis} - Q_{rad}$$

Formation of an Accretion Disk

Initial state

t=26350

unit time t₀=rg/c

Magnetic Field Lines

Magnetic field lines projected onto the equatorial plane

(-60 < x, y < 60)

Outer region

(-10 < x, y < 10)

Inner region

Magnetic field lines are tightly wound.

Turbulent motions are dominant in the disk.

Magnetic field lines are less turbulent and globally show bisymmetric spiral shape (BSS).

Outline of this Talk

- MHD Simulations of the wiggle instability in Galactic gas disks (M. Tanaka, M. Machida, K. Wada and R. Matsumoto 2005)
- Global 3D MHD Simulations of Galactic gas disks (H. Nishikori, M. Machida and R. Matsumoto 2005)

MHD Simulations of the Wiggle Instability in Galactic Gas Disks

Whirlpool Galaxy . M51

NASA and The Hubble Heritage Team (STScI/AURA) Hubble Space Telescope WFPC2 • STScI-PRC01-07 Dark spur-like structures exist perpendicular to the spiral arms

By carrying out 2D global hydrodynamic simulations, Wada and Koda (2003) found that spur-like structures are created behind the spiral shock 7

Global Simulations of the Wiggle Instability

Gravitational Potential

$$\Phi(r,\phi) \equiv \Phi_0(r) + \Phi_1(r,\phi)$$

$$\Phi_0(r) \equiv a v_a^2 (\frac{27}{4})^{1/2} (r^2 + a^2)^{-1/2}$$

$$\Phi_1(r,\phi) \equiv \varepsilon_0 \frac{a r^2 \Phi_0}{(r^2 + a^2)} \cos[2\phi + 2\cot i \cdot \ln(r)]$$

- Isothermal gas
- Neglect self-gravity
- Initially uniform gas
- axisymmetric part of gravity balances with rotation at the initial state

Global MHD Simulations of the Wiggle Instability

- We assume initially force free, toroidal magnetic fields: =Pgas/Pmag=10 at r=1kpc
- Simulation Code : CANS
- Simulation Engine : MLW
- Simulation region : 4kpc × 4kpc
- Number of Grid Points: 2048 × 2048

Numerical Results

Local Simulations of the Wiggle Instability: Are Global Effects Essential ?

Numerical Results for Hydrodynamical Model

600 × 240 mesh 600×240 : 55steps -10 Fourier 2.5 Amplitude 0 ! Mode number

1200 × 480 mesh

Mode number ¹²

Mechanism of the Instability

Numerical Results for MHD Models

Weak field

Strong field

600 × 240 mesh

Galactic Gas Disks

- Gravitational Potential
 - Axisymmetric potential given by Miyamoto (1980) including dark matter
- Initial state
 - Constant angular momentum torus at 10kpc
 - Weak toroidal magnetic field
 (=100,1000)
- Anomalous resistivity
- Absorbing boundary at r=0.8kpc

250*64*319 mesh

Numerical Results (=100)

Density Distribution and Magnetic Field Lines

-0.60

-0.90

-1.20

-1.50

t = 3.8Gyr

Growth of Magnetic Field

Average in 2kpc < r < 5kpc and 0 < z < 1kpc

Dependence on Azimuthal Resolution and Simulation Region

Model III: Full Circle Simulation with =2 /64 Model V-VII: ¹/₄ Circle Simulation (0 < < /2) with V: = /128 VI: = /64 VII: = /32

Reversal of Azimuthal Magnetic Field

Azimuthal field at t=3.8Gyr at z=0.25Kpc

obtained by Rotation Measure

(Han et al. 2001)

Spacial and Temporal Reversal of Azimuthal Magnetic Fields

Azimuthal Magnetic Field at t=3.1Gyr

field at 5kpc < r < 6kpc and 0 < z < 1kpc

Buoyant Rise of Azimuthal Magnetic Flux

Distribution of azimuthal filed at r=10kpc at t=3Gyr

Motion of the Wavefront of Rising Magnetic Flux

Numerical Results for a Model with =1000

Rotation Curves for Stars/Dark matter and Gas

Discussion

- Magnetic field strength
 - Amplification of magnetic field saturates when ~ 10. The final field strength (~ µ G) is smaller than the Galactic magnetic field
 - Non-axisymmetric gravitational potential, Supernova explosions, and/or cooling of the interstellar gas may further amplify magnetic fields
- Infall of the interstellar gas
 - Interstellar gas loses angular momentum by Maxwell stress and infalls with accretion rate 0.001M_sun/yr when the initial torus has 5*10^8 M_sun

Summary

- We studied the stability of the galactic spiral shock and showed by local and global simulations that even when the magnetic fields are included, wiggle instability grows.
- 3D global MHD simulations of the galactic gas disks under axisymmetric gravitational potential showed that µG magnetic fields are maintained
- The direction of azimuthal magnetic fields reverses both in space and time.
- Other mechanisms such as non-axisymmetric gravitational potential and/or supernova explosions may further amplify magnetic fields.