Local Dissipation and Radiative Transfer in Accretion Disks

> Shigenobu Hirose (Earth Simulator Center) Julian H. Krolik (Johns Hopkins University) James M. Stone (Princeton University)

Radial Structure of Geometrically Thin and Optically Thick Disks

One zone model by Shakura and Sunyaev (1973)

- local energy balance: $Q_{vis}^{+}(r) = Q_{rad}^{-}(r)$
- hydrostatic balance: $\Omega_{\rm K}(r) H$
- "α" viscosity:

$$\Omega_{\rm K}(r) H(r) = c_{\rm s}(r)$$
$$T_{\rm r}(r) = -\alpha p(r)$$

 $\begin{cases} H(r) = H(r; M, \dot{M}, \alpha) \\ \Sigma(r) = \Sigma(r; M, \dot{M}, \alpha) \\ \cdots \end{cases}$

(a) inner region: $p \approx p_{radiation}, \ \chi \approx \chi_{Thomson_scattering}$ (b) middle region: $p \approx p_{gas}, \ \chi \approx \chi_{Thomson_scattering}$ (c) outer region: $p \approx p_{gas}, \ \chi \approx \chi_{free_free}$

Vertical Stratification of the Disks

$$-\frac{dp(z)}{dz} + \frac{\chi(z)\rho(z)}{c}F(z) - \rho(z)\Omega_{K}^{2}z = 0 \quad \text{momentum equation for gas}$$
$$-\left(4\pi B(z) - cE(z)\right)\kappa(z)\rho(z) + Q_{\text{diss}}^{+}(z) = 0 \quad \text{energy equation for gas}$$
$$-\frac{dP(z)}{dz} - \frac{\chi(z)}{c}F(z) = 0 \quad \text{momentum equation for radiation}$$
$$\left(4\pi B(z) - cE(z)\right)\kappa(z)\rho(z) - \frac{dF(z)}{dz} = 0 \quad \text{energy equation for radiation}$$

MHD turbulence driven by MRI: most promising candidate for viscosity

Dynamical equations of gas, radiation and magnetic field must be solved self-consistently.

Purpose of This Work is to Obtain ...

Vertical stratification of MRI-driven (gas-dominated) disks using 3D Radiation MHD simulation with FLD approximation, where dissipation process and radiative transfer are explicitly solved. (Hirose, Krolik and Stone 2006)

Related works

- Miller & Stone (2000): gas-dominated disk (iso-thermal)
- Turner (2004): radiation-dominated disk (FLD)

Basic Equations

Radiation MHD in the frequency-averaged flux limited diffusion (FLD) approximation

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) &= 0 \\ \frac{\partial (\rho v)}{\partial t} + \nabla \cdot (\rho vv) &= -\nabla p + j \times B + \frac{\overline{\chi}_{\text{Rosseland}} \rho}{c} F - 2\rho \Omega \times v + 3\rho \Omega^2 x - \rho \Omega^2 z \\ \frac{\partial E}{\partial t} + \nabla \cdot (Ev) &= -\nabla v : P + \overline{\kappa}_{\text{Planck}} \rho (4\pi B_{\text{Planck}} - cE) - \nabla \cdot F \\ \frac{\partial e}{\partial t} + \nabla \cdot (ev) &= -(\nabla \cdot v) p - \overline{\kappa}_{\text{Planck}} \rho (4\pi B_{\text{Planck}} - cE) \\ \frac{\partial B}{\partial t} - \nabla \times (v \times B) &= 0 \\ F &= -\frac{c\lambda}{\overline{\chi}_{\text{Rosseland}} \rho} \nabla E \\ p &= (\gamma - 1)e \\ P &= f E \\ &\quad \text{- LTE: source function = Planck Function } \frac{B_{\text{Planck}}}{\overline{\kappa}_E} = \overline{\kappa}_{\text{Planck}} \end{aligned}$$

Basic Equations

3D equations of radiation MHD in the flux limited diffusion (FLD) approximation

- Eddington tensor: $f = \frac{1}{2}(1-f)I + \frac{1}{2}(3f-1)nn$, $n \equiv \frac{\nabla E}{|\nabla E|}$ - Eddington factor: $f = \lambda(R) + \lambda(R)^2 R^2$

- flux limiter:
$$\lambda(R) = \frac{2+R}{6+3R+R^2}$$

optically thin limit $\lim_{R \to \infty} \lambda(R) = \frac{1}{R}$, $\lim_{R \to \infty} f = 1 \implies |F| = cE$
optically thick limit $\lim_{R \to 0} \lambda(R) = \frac{1}{3}$, $\lim_{R \to 0} f = \frac{1}{3} \implies P = \frac{1}{3}EI$
- opacity parameter: $R \equiv \frac{\nabla E}{\chi_{\text{Rosseland}}\rho}$

ZEUS code with FLD module (Turner & Stone 2001) is modified and used.

- energy conservation

- implicit scheme for diffusion equation: Gauss-Seidel method accelerated by FMG

Energy Dissipation

Explicit viscosity and resistivity are not included in the basic equations. Kinetic and magnetic energies that are numerically lost are captured as internal energy.

$$\begin{cases} \frac{\partial}{\partial t} \left(\frac{1}{2}\rho v^{2}\right) + \nabla \cdot \left(\left(\frac{1}{2}\rho v^{2}\right)v + pv\right) = (\nabla \cdot v)p - \tilde{Q}_{kin} \\ \frac{\partial}{\partial t} \left(\frac{1}{2}B^{2}\right) + \nabla \cdot (E \times B) = -\tilde{Q}_{mag} \\ \frac{\partial}{\partial t} \left(\frac{1}{2}\rho v^{2} + e + \frac{1}{2}B^{2}\right) + \nabla \cdot \left(\left(\frac{1}{2}\rho v^{2} + e\right)v + pv + E \times B\right) = 0 \\ \Leftrightarrow \frac{\partial e}{\partial t} + \nabla \cdot (ev) = -(\nabla \cdot v)p + \tilde{Q}_{kin} + \tilde{Q}_{mag} \end{cases}$$

Numerical dissipation rate is evaluated by solving adiabatic equation simultaneously.

$$\frac{\partial e}{\partial t} + \nabla \cdot (e\mathbf{v}) = -(\nabla \cdot \mathbf{v})p$$

(For clarity, radiation and potential energies are not included in the above.)

cooling rate $Q_{rad}^- = F + Ev$ he

heating rate $Q_{\text{diss}}^+ = \tilde{Q}_{\text{mag}} + \tilde{Q}_{\text{kin}}$

Initial Condition

Time Evolution of the System

MHD Turbulence driven by MRI (T=25-30 orbits)

Hydrostatic Balance

Local Dissipation and Energy Balance

- Dissipation occurs mainly inside the disk body.
- Dissipation rate is roughly uniform inside the disk body.
- Dissipation distribution well agrees with stress distribution.

• Dissipated energy is transferred to the disk surface by radiation diffusion.

Temperature

Location of Photosphere

Gas and radiation well couples inside the disk body.

Alpha Value

$$\alpha = T_{r\phi} / P_{total}$$

• disk body (
$$\beta > 1$$
)
 $\alpha \sim 0.3$
• disk atmosphere ($\beta < 1$)

$$\alpha \sim \beta^{-1}$$

$$\alpha_{mag} = T_{r\phi} / P_{mag}$$

 $\alpha_{mag} \sim 0.3$ in the entire region

$$\beta = P_{gas} / P_{mag}$$

Summary

We calculate the vertical structure of disks where heating by dissipation of MRI-driven MHD turbulence is balanced by radiative cooling.

