Self-similar evolution of fast magnetic reconnection in free-space: A new model for astrophysical reconnection

Shin-ya Nitta 新田 伸也

The Graduate University for Advanced Studies, Hayama Center for Advanced Studies E-mail: snitta@koryuw02.soken.ac.jp

§Introduction

Magnetic reconnection is

- Very powerful energy converter
- Very common in the universe

e.g., Solar Flares

§§Astrophysical Reconnection

Astrophysical Reconnection is characterized by

huge dynamic range of expansion

e.g., Solar flares

Initial system scale

$$\sim 10^0 \, [\text{m}]$$

(Initial Current Sheet Thickness)

Final system scale

$$\sim 10^7 \, [\text{m}]$$

(Maximum scale of reconnection system)

intrinsically Time-Dependent

Should be treated as

Spontaneous Evolution in Free Space

Cannot be described by previous models!

Aim of this work

Suitable reconnection model for astrophysical application?

Self-Similar Evolution

§Evolution Process

1) Onset (Resistive Stage)

$$t < D/V_A$$

Sweet-Parker-like or tearing

Formation of

Fast-mode Rarefaction Wave

2) Induction of Inflow

$$t \gtrsim D/V_A$$

Propagation of FRWF

Induction of Inflow

3) Similarity Stage (Petschek-like at center) $t\gg D/V_A$

Formation of Slow-Shock Λ

Fast-mode Rarefaction Dominated (Petschek-like) Fast Reconnection

§Numerical Approach

Code: '2-siep Lax-Wendroff Current Sheet

Parameters & Normalization

Parameters

$$\beta \equiv \frac{P_0}{B_0^2/8\pi} = 0.2$$

$$R_m \equiv \frac{V_{A0}}{\eta/D} = 24.5$$

Normalization

$$P_0 \sim 0.6$$

Dimension Unit

$$[L/T]$$
 C_{s0} $B_0 \sim 8.7$ $[L]$ D \Rightarrow $V_{A0} \sim 2.4$

$$[\mathrm{M/L^3}] \qquad \rho_0 \qquad \qquad \eta = 0.1$$

§§Simulation Result

Self-Similarly Expanding! with Fast-mode Rarefaction Wave Front

§Analytical Approach

§§Inflow Region

Zoom-out coordinate

$$\vec{r} \equiv (V_A t) \vec{r'}$$

$$\vec{v} = V_A \vec{v'} + \vec{r'}$$

$$\rho = \rho_0 \rho'(\vec{r'})$$

$$\vec{B} = V_A \sqrt{\mu_0 \rho_0} \vec{B'}(\vec{r'})$$

$$P = \beta/2 \cdot \rho_0 V_A^2 P'(\vec{r'})$$
where $\beta \equiv (C_s/V_A)^2$

Linear perturbation method

Equilibrium (0th)+Deviation (1st) by reconnection

Grad-Shafranov Eq.

$$(1-x^2)\frac{\partial^2 A_1'}{\partial x^2} - 2xy\frac{\partial^2 A_1'}{\partial x \partial y} + (1-y^2)\frac{\partial^2 A_1'}{\partial y^2} = 0$$

$$\begin{aligned} \vec{B_1'} &= \vec{\nabla'} \times A_1' \vec{k} \\ v_{1x}' &= 0 \\ v_{1y}' &= x \frac{\partial A_1'}{\partial x} + y \frac{\partial A_1'}{\partial y} - A_1' \\ \rho_1' &= \frac{\partial A_1'}{\partial y} \\ P_1' &= \gamma \frac{\partial A_1'}{\partial y} \end{aligned}$$

§ § Solution for Inflow Region

§§Reconnection Outflow

Quasi-1D structure divided by

several discontinuities

Reconnection jet collides with current sheet plasma

Structure of reconnection outflow

Slow Shock
Reverse Fast Shock

X-Slow Shock
region p

region 1

region 2

region 3

Forward Slow Shock

Forward Slow Shock

Shock tube approximation

22 eqs. (junction conditions)

for

22 unknowns

Quantities in outflow

spontaneously determined!!

§§Reconnection Rate

Reconnection Rate vs. beta

Rec. rate R ~ 0.05 for low β (almost const. indep. of β)

Spontaneous inhalation of inflow (induced by fast-mode rarefaction)

Reconnection Rate vs. Mag. Reynolds Num.

converging inflow: $|Vxp| \uparrow$ as Rem* \uparrow \Rightarrow Vp, $Bp \rightarrow$ parallel at inflow region

§Observational Inspection

We can inspect Self-Similar Model

by **Solar-B**

"Dimming" around reconnection point

Rarefied region by FRW

Emission Measure

Existence of inflow~10[km/s]

Expanding in $V_{A0} \sim 1000 [km/s]$

Duration $\sim 100[s]$

§Summary

Spontaneous Evolution of

Fast Magnetic Reconnection in Free Space

Self-Similar Solution

(verified by numerical simulation/analytical study)

A new model of Magnetic Reconnection

Self-Similar Evolution of Fast Reconnection

Properties

- Expanding with propagation of FRW
- Petschek-like structure in central region (Fast-mode rarefaction dominated)
- Reconnection rate $R \sim 0.05$

(for small Rem*<20, insensitive to β) \leftarrow spontaneous inhalation of inflow

• Reconnection rate $R \propto \text{Rem}^* \land (-1)$

(for large Rem* \gg 20, insensitive to β)

References

Nitta, Tanuma, Shibata, Maezawa ApJ, 550, 1119 (2001) Nitta, Tanuma, Maezawa ApJ, 580, 538 (2002) Nitta ApJ, 610, 1117 (2004)

§§Simulation Result

Evolution in Zoom-Out Coordinate

Features of reconnection system

Self-Similarly Expanding!

with propagation of Fast-mode Wave Front

Reconnection Rate vs. Mag. Reynolds Num.

$$R \equiv Vp \times Bp \propto Rem^* \wedge (-1) (Rem^* \equiv V_{A0}/V_{dif}^*)$$

converging inflow: $|Vxp| \uparrow$ as Rem* \uparrow \Rightarrow Vp, $Bp \rightarrow parallel$ at inflow region \Rightarrow $R \equiv Vp \times Bp \downarrow$

A new model of magnetic reconnection: Self-similar evolving model

Shin-ya Nitta 新田 伸也

The Graduate University for Advanced Studies, Hayama Center for Advanced Studies E-mail: snitta@koryuw02.soken.ac.jp

§Introduction

Magnetic reconnection is

- Very powerful energy converter
- Very common in the universe

e.g., Solar Flares

