Nov. 18, 2005: MHD workshop (Chiba Univ.)

3D MHD simulation of cloud fragmentation (a short comment)

Takahiro Kudoh (NAOJ)

Collaborators: Shantanu Basu (UWO), Yoichi Ogata (TIT), Takashi Yabe (TIT)

Interstellar molecular clouds are the sites of star formation.

Taurus (Nagoya 4m) radio (¹³CO)

A simple model: They are self-gravitating gas clouds with magnetic field and turbulence.

Cloud contraction with magnetic field

There is an evidence of large-scale magnetic fields in the cloud.

Model: Gravitationally Stratified Cloud

Gravitational instability of plate-shaped gas.

- Weak magnetic field Nakano & Nakamura 1978 $E_{\rm mag} < E_{\rm grav}$ (supercritical) gravitationally unstable $\lambda_{\text{most unstable}} \approx 4\pi H \ (B \approx 0)$ - Strong magnetic field $E_{\rm mag} > E_{\rm grav}$ (subcritical) gravitationally stable ambipolar diffusion (magnetic diffusion)

gravitationally unstable

(Mouschovias 1978)

2D-MHD simulation with ambipolar diffusion

3D-MHD simulation with ambipolar diffusion (this study)

Isothermal

We input large random perturbation (V_{max} =10C_s) perpendicular to magnetic field at *t*=0.

side view slice

Fast gravitational collapse ~ 7 x10⁵ year
Infall velocity is nearly super-sonic.

 $\cdot V_z$ is also nearly supersonic.

- •Slow gravitational collapse ~ 5 x10⁶ year
- •Infall velocity is subsonic.
- $\cdot V_z$ is also subsonic.

Summary

- •Time scale of the gravitational collapse Fast collapse ~ 7 x10⁵ year: E_{mag}<E_{grav} (supercritical) Slow collapse ~ 5 x10⁶ year: E_{mag}>E_{grav} (subcritical)
- •Infall velocity supersonic: E_{mag}<E_{grav} (supercritical) subsonic: E_{mag}>E_{grav} (subcritical)
- Magnetic flux

 $B \propto \rho^{0.6}$ (lower beta cores): $E_{mag} < E_{grav}$ (supercritical) $B \propto \rho^{0.3}$ (higher beta cores): $E_{mag} > E_{grav}$ (subcritical)