Galactic-Center Arc & Threads: Current sheet model

Y. Sofue, H. Kigure & K. Shibata

2005 Nov 17-18@ MHD WS, Chiba University

Radio 10 GHz (3cm) 6x3 deg, Nobeyama 45m Sofue et al. 1985

Vertical Magnetic Field in GC

Radio 1.4 GHz (VLA Yusef-Zadeh, Morris)

Radio 5 GHz (VLA Yusef-Zadeh, Morris)

Radio Threads

Past models for the radio arc Sofue, Fujimoto 1987; Benford 1988: B x B (V) Dahlburg et al. 2002: B x Cloud instability

Interaction of VerticId Magnetic field and Rotating Gas

Twisted vertical magnetic field in GC

Origin of Vertical field in GC

Y. Sofue and M. Fujimoto

High-velocity rotation and dispersion of Molecular Clouds

Molecular ring/clouds in GC (CO Line BTL 7m Bally et al.)

Face-on View

Magnetic reconnection and Current Sheet model

Thread properties

- Local, Isolated
- Thin/narrow
- Non-axisymmetric
- No energy injection (such as jets)
- High contrast against backgr.

GC MHD circumstance Vertical magnetic field Molecular clouds High-rotation (deep grav.pot) High-velocity dispersion

MHD Simulation of Threads and Arc

Non-axisymmetric 3D

(Method: Kigure et al. 2005)

90 cm (LaRosa et al. 2000)

High contrast of radio brightness

Flux of released energy along the current sheet (thread) by

```
Bz x B term = Poyinting flux
f = BzB V/4 \qquad thread
f0 = Bz0B oVo/4 \qquad ambient
```

Ratio of tread/ambient fluxes

$$r = f/f0 = B /B 0 V/V0 >> 1$$
 because B 0 ~ 0

Radio brightness

$$= 2k \text{ Tb}/\ ^2$$

$$= f/\ \sim \ (B\ /Bo)Bo^2\ V\ /\ 4$$

$$= \text{Efficiency of Poynting flux to Radio flux (CR accel. Etc)}$$

$$\sim 1\ GHz$$

$$V \sim 100\ km/s,$$

$$Bo \sim 100\ \mu\,G$$
From simulation B /Bo ~ 0.1 .
Hence, Tb $\sim 10^{-4}$ K.
Observation: Tb ~ 0.1 – 1 K
$$\sim 10^{-4}$$
 -10⁻⁵

Thread properties understood by Current sheet model:

- Local, Isolated, narrow
- Non-axisymmetric
- No energy injection
- High contrast against backgr.