中性子星への超臨界降着の 一般相対論的輻射磁気流体 シミュレーション

高橋博之、

超高光度X線源パルサー

ULX Pulsar: エディントン光度を超える光度を持つ中性子星

M82 X-2のライトカーブ

現在わかっているパルスを持つ

超高光度X線パルサー

a 0.3 Counts per s per module 0.25 0.15 **FPMA** FPMB 0.1 30 25 oulsed flux (%) 20 15 10 03-30 keV 56680 56690 56700 56710 56720 MJD Bachetti '14

Pdot Lx Lpulse P(s) (erg s⁻¹) (s s⁻¹) (erg s⁻¹) **ULX M82** 1.37 -2x10-10 1.8×10^{40} 4.9x10³⁹ X-21 NGC 7793 0.42-0.417 -4x10-11 2~5x10³⁹ ~1x10³⁹ P132,4 NGC 5907 1.43-1.13 -5x10⁻⁹ <1x10⁴¹ <1040 **X]** 3,5

1:Bachetti'14, 2,3: Israel'16,4,5: Furst

- 回転周期1秒程度を持ち、10-11 10-9 s s-1程度の割合でスピンアップ
- パルス成分はX線光度の10%程度
- パルスが見つかっていない超高光度X線源でもULX Pulsarと似たようなスペクトル を持つものもある (Pintore'17).
- Neutron star is more feasible to explain the power (King'16)

中性子星へのガス降着のシミュレーション研究

Accretion onto Magnetized NS

GRRMHD計算:電子散乱、熱的コンプトン、制動放射、シンクロトロン放射を考慮 1.4太陽質量半径10km中性子星,磁場強度B₀=10¹⁰ G、中性子星の回転を無視、軸対称を仮定

Current status: GR-RMHD simulations

mass cons.	$\partial_t \left(\sqrt{-g} ho u^t ight) + \partial_i \left(\sqrt{-g} ho u^i ight) = 0$
Gauss's law	$\partial_i \left(\sqrt{-g} B^i \right) = 0$
Induction eq.	$\partial_t \left(\sqrt{-g} B^i ight) = - \partial_j \left[\sqrt{-g} \left(b^j u^i - b^i u^j ight) ight]$
energy momentum cons. for MHD	$\partial_t \left(\sqrt{-g} T^t_{\nu} \right) + \partial_i \left(\sqrt{-g} T^i_{\nu} \right) = \sqrt{-g} T^{\kappa}_{\lambda} \Gamma^{\lambda}_{\nu\kappa} + \sqrt{-g} G_{\nu}$
energy momentum cons. for radiation	$\partial_t \left(\sqrt{-g} R^t_{\nu} \right) + \partial_i \left(\sqrt{-g} R^i_{\nu} \right) = \sqrt{-g} R^{\kappa}_{\lambda} \Gamma^{\lambda}_{\nu\kappa} - \sqrt{-g} G_{\nu}$
radiation four C	$G^{\mu} = - ho(\kappa_a + \kappa_s)R^{\mu u}u_{ u} - ho(\kappa_s R^{lphaeta}u_{lpha}u_{eta} + \kappa_a 4\pi B)u^{\mu}$
force	$B^{\mu\nu} = \frac{4}{2} \bar{E}_{\mu\nu} \mu_{\mu\nu} + \frac{1}{2} \bar{E}_{\mu\nu} \mu_{\mu\nu}$
M1-closure	$\frac{10^{\circ}}{3} - \frac{1}{3} \frac{1}{$

Ideal MHD is employed.

The gravity field is given by point source. ←fixed metric using analytic Einstein eq.
Radiation field is described by moment formalism (Thorne'79)
The gas interacts with radiation field through opacity
(e-scattering, free-free, bound-free, Compton scattering, synchrotron,…)

時間平均した流線&磁力線&プラズマβ=1

超臨界降着円盤と磁気圏の相互作用

○**円盤 (r > 3**R∗):

ガスはケプラー回転

α パラメータは 0.01 <~ 0.1 ←従来の円盤計算と無矛盾の結果
</p>

○磁気圏半径(r=3R*, β=1)

角運動量は急激に減少しNS表面でほぼ0に

 α パラメータは0.1を超える \leftarrow 非常に効率的な角運動量輸送が働く

Takahashi & Ohsuga '17, ApJL

角運動量フラックス

議論: ULX Pulsarのスピンアップ率

- 双極磁場の磁気圧=円盤内の輻射圧

議論: ULX Pulsarの磁場強度

放射効率を仮定して質量降着率を光度に直すと磁場強度を見積もることができる

$$B = 2.2 \times 10^{13} \text{ G} \left(\frac{\dot{P}}{-10^{-10} \text{ s s}^{-1}}\right)^{\frac{7}{2}} \left(\frac{\eta}{0.2}\right)^{3} \left(\frac{L}{10L_{\text{Edd}}}\right)^{-3} \left(\frac{\alpha}{0.1}\right)^{-\frac{1}{2}} \left(\frac{M_{*}}{1.4M_{\odot}}\right)^{-1} \left(\frac{R_{*}}{10 \text{ km}}\right)^{-4} \left(\frac{P}{1 \text{ s}}\right)^{-7}$$

 $\eta = 0.2$ is derived from

$\frac{GM}{R} = \frac{GM}{R}$	$\frac{*\dot{M}}{*} = \eta \dot{M}c^2$	P(s)	Pdot (s s ⁻¹)	Lx (erg s ⁻¹)	L _{pulse} (erg s ⁻¹)	B field (G)
	ULX M8 X-21	2 1.37	-2x10 ⁻¹⁰	1.8x10 ⁴⁰	4.9x10 ³⁹	1.5x10 ¹¹
	NGC 779 P13 ^{2,4}	93 0.42-0.41 7	-4x10 ⁻¹¹	2~5x10 ³⁹	~1x10 ³⁹	1.7x10 ¹³
	NGC 590 X-1 ^{3,5}	1.43-1.13	-5x10 ⁻⁹	<1x10 ⁴¹	<10 ⁴⁰	8.7x10 ¹²

NGC 7793 P13/NGC5907は非常に強い磁場(~BQED)を持つため 散乱係数はO/X modeで異なる可能性 (Miller 1995; Mushtukov, Nagirner & Poutanen 2012) ただし、この結果は放射効率に強く依存 (Ghosh & Lamb'79も同様)

輻射によって加速されたアウトフロー

リコネクションアウトフロー1

降着率が上がると円盤が磁気圏を内側へと押し込む

中性子星磁場が円盤によって捻られ、磁気ループが膨張

膨張した磁気ループ内で磁気リコネクションが起こりアウトフローを形成

-> このタイプのアウトフローは降着率が増大する状態遷移時に起きる

リコネクションアウトフロー2

Magnetic reconnection takes place many times following to the mass accretion. This type of magnetic reconnection happens both in north and south hemisphere.

リコネクションアウトフロー2

リコネクションによって噴出するアウトフロー速度~アルヴェン速度~0.3c 磁気リコネクションが中性子星表面に形成される降着柱内で起きると アウトフロー領域への質量供給が起きる。

まとめ

ULXパルサーで期待される降着円盤と磁気圏の相互作用を調べるため、 2.5次元**一般相対論的輻射磁気流体計算**を実施 磁場強度をB=10¹⁰Gとし、中性子星の回転を無視した。

シミュレーションの結果

- 中性子星へのガス降着率~100LEdd/c² 光度~10LEdd.
- 超臨界降着円盤はr=3R*で途切れる
- → この半径は円盤の輻射圧と双極磁場の磁気圧によって決まる
- r=3R*より外側ではMRIによる外向きの角運動量輸送 r=3R*より内側では双極磁場の磁気トルクによる内向きの角運動量輸送 NSのスピンアップ率は10⁻¹¹ s s⁻¹←観測と無矛盾
- 定常的なアウトフローは輻射によって加速

定常的なアウトフローの他に磁気的なアウトフローが突発的に発生

- 降着率の増大に伴う双極磁場の膨張とリコネクションアウトフロー
- 降着に伴う降着柱内でのリコネクションと質量放出

古典的な磁気圏半径 (磁気圧=自由落下による動圧) とは異なる