MHD Simulations of Twisted Magnetic Flux Tube in Galactic Central Region

Peng, Chih-Han 彭之翰(D4); Matsumoto, Ryoji 松元亮治 千葉大学大学院理学研究科宇宙物理研究室

「磁気流体プラズマで探る高エネルギー天体現象」研究会 CHIBA UNIVERSITY

Molecular Loops in Galactic Center Region

Discovered by CO emission line observation (Fukui et al. 2006, Fujishita et al. 2009)

Scale of molecular loops 200-600 pc

Strong emission at foot points

Velocity gradient along loops (~35 km/s per 100 pc)

Strong velocity dispersion at foot points (40~80 km/s)

Molecular Loops in Galactic Center Region

Discovered by CO emission line observation (Fukui et al. 2006, Fujishita et al. 2009)

Scale of molecular loops 200-600 pc

Strong emission at foot points

Velocity gradient along loops (~35 km/s per 100 pc)

Strong velocity dispersion at foot points (40~80 km/s)

Parker Instability ?

Are Molecular Loops Galactic Prominence ? (Morris 2006, Torii et al. 2010)

(Fukui et al. 2006)

Molecular loop ~100 K (loop structure) Interstellar medium ~ 10^4 K (surrounding)

> Cold and dense loop structure exists in high temperature and low density environment

Solar Prominence ~ 10⁴ K (loop structure) Corona ~ 10⁶ K (surrounding)

KR Model (Kuperus & Raadu 1974)

van Ballegooijen and Martens 1989

Reconnection–Condensation Model (Kaneko & Yokoyama 2015, 2017)

Figure 1. Schematic of a possible process of in situ radiative condensation.

Kaneko & Yokoyama 2015

KR Model (Kuperus & Raadu 1974)

van Ballegooijen and Martens 1989

Magnetic arcade and Foot Point Motion in Galactic Disk

Schematic drawing of the mechanism of the MHD dynamo.

Machida et al. 2013

Aim :

Apply solar prominence model to explain molecular loops in the Galactic central region

2D Simulation Model (Peng & Matsumoto 2017)

2D Simulation Model (Peng & Matsumoto 2017)

z(pc)

$$B_{x} = -\left(\frac{2L_{a}}{\pi H_{m}}\right)B_{a}\cos\left(\frac{\pi}{2L_{a}}x\right)\exp\left(-\frac{z}{H_{m}}\right)$$
$$B_{y} = \sqrt{1-\left(\frac{2L_{a}}{\pi H_{m}}\right)^{2}}B_{a}\cos\left(\frac{\pi}{2L_{a}}x\right)\exp\left(-\frac{z}{H_{m}}\right)$$
$$B_{z} = B_{a}\sin\left(\frac{\pi}{2L_{a}}x\right)\exp\left(-\frac{z}{H_{m}}\right)$$

$$\begin{split} B_a &= 1.54 \text{ x } 10^{-5} \text{ G } (\beta_{bottom} = 0.2) \\ L_a &= 200 \text{ pc } (\text{half width of magnetic arch}) \\ H_m &= 200 \text{ pc } (\text{magnetic scale height }) \end{split}$$

2D Simulation Model (Peng & Matsumoto 2017)

Equations

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) &= 0\\ \frac{\partial (\rho \boldsymbol{v})}{\partial t} + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{v}) &= -\nabla P - \rho \boldsymbol{g} + \frac{(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4\pi}\\ \frac{\partial \boldsymbol{B}}{\partial t} &= \nabla \times (\boldsymbol{v} \times \boldsymbol{B} - \eta \nabla \times \boldsymbol{B})\\ \frac{\partial E}{\partial t} &= \nabla \times (\boldsymbol{v} \times \boldsymbol{B} - \eta \nabla \times \boldsymbol{B})\\ \frac{\partial E}{\partial t} + \nabla \cdot \left[\left(\boldsymbol{E} + P + \frac{B^2}{8\pi} \right) \boldsymbol{v} - \frac{\boldsymbol{B}(\boldsymbol{B} \cdot \boldsymbol{v}) - \eta(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4\pi} \right] = \rho \boldsymbol{v} \cdot \boldsymbol{g} - \rho \mathcal{L}\\ \boldsymbol{E} &= \frac{P}{\gamma - 1} + \frac{\rho v^2}{2} + \frac{B^2}{8\pi}\\ \eta &= \begin{cases} 0 & J < J_c \\ \eta_0 (J/J_c - 1)^2 & J \ge J_c \end{cases} & \text{Anomalous resistivity}\\ \eta_0 &= 3 \times 10^{23} \text{ cm}^2 \text{ s}^{-1}\\ J_c &= 4.0 \times 10^{-17} \text{ dyn}^{1/2} \text{ cm s}^{-1} \end{split}$$

Flux rope

Column Density in x-direction

-2.2

-2.3

[g/cm²]

LogΣ

Velocity along the loop

Position-Velocity Diagram

Velocity gradient along loop Observation : 50~80 km/s Simulation : ~10 km/s

Velocity dispersion at foot point Observation : ~50 km/s Simulation : ~15 km/s

Total mass of molecular loop

Loop1 : 1.6 x 10^6 M_{solar} (Torii et al. 2010) Loop2 : 1.9 x 10^6 M_{solar} (Torii et al. 2010) Simulation : 4 x 10^5 M_{solar}

Summary

We present results of 3D MHD simulations based Kaneko & Yokoyama (2015, 2017) in the scale about few hundred pc to study loop-formation in the GC region.

Magnetic arcades was squeezed by foot point motion and gas around x = 0 pc was squeezed. Thermal instability can be triggered at high density region

The relatively high column density loop structure can be formed by adjusted foots points motion

The p-v diagram shows similar trend with observation. We estimated velocity gradient, velocity dispersion of foot point and total mass of the loop.