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1.1. MR in High-Energy Astrophysical Phenomena
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Fig. 21 Left panel. In the model by Lazarian and Medvedev (2015) magnetized jet with
spiral magnetic field is being ejected. The spiral undergoes kink instability which results
in turbulent reconnection. Right panel Numerical simulations of 3D relativistic jet that is
subject to the kink instability and turbulent reconnection. From Mizuno et al (2015).

More recently, Kadowaki et al (2015) revisited the aforementioned model
and extended the study to explore also the gamma-ray flare emission of these
sources. The current detectors of high energy gamma-ray emission, partic-
ularly at TeVs (e.g., the FERMI-LAT satellite and the ground observato-
ries HESS, VERITAS and MAGIC) have too poor resolution to determine
whether this emission is produced in the core or along the jets of these sources.
This study confirmed the earlier trend found in GL05 and de Gouveia Dal
Pino et al (2010b) and verified that if fast reconnection is driven by turbu-
lence, there is a correlation between the calculated fast magnetic reconnection
power and the BH mass spanning 1010 orders of magnitude. This can explain
not only the observed radio, but also the gamma-ray emission from GBHs
and low luminous AGNs (LLAGNs). This match has been found for an ex-
tensive sample of more than 230 sources which include those of the so called
fundamental plane of black hole activity (Merloni et al 2003) as shown in
Figure 23. This figure also shows that the observed emission from blazars
(i.e., high luminous AGNs whose jet points to the line of sight) and GRBs
does not follow the same trend as that of the low luminous AGNs and GBHs,
suggesting that the observed radio and gamma-ray emission in these cases is

waves and cusp-shaped current sheets. We have shown that
the mass accretion from the circularly rotating dense torus
is not time steady but intermittent. The interval of mass
feeding from the torus is the rotation period of the torus
(Fig. 7a). In our simulation, this timescale corresponds to
t0 ! 3000rg=c ! 0:03M=M" s. If the torus locates at
$0

b ¼ 500rg, this interval t00 ! 0:9M=M" s approaches the
interval of observed shots if the mass of the black hole is 10
M". Once dense blobs accrete to the innermost region, the
profile of the shot is essentially determined by the local proc-
esses in the innermost region. Thus the profile of one shot
may not depend on the location of the center of the torus.
However, the interval of the shot depends on $b. Smaller
X-ray shots and fluctuations can be created by magnetic
reconnections ubiquitous in accretion disks. Observations
of Cyg X-1 indicate that the averaged shot profile is time
symmetric (Negoro, Kitatmoto, & Mineshige 2001) and
X-rays become hard at the peak of the shot.

Figure 17 schematically shows the mechanism of X-ray
shots. The upper left-hand panel shows the accretion stage
when dense blobs fall into the innermost region. As the den-
sity in the innermost region increases, the soft X-ray lumi-
nosity increases. Current sheets are formed inside the BSS
channel, and magnetic energy is accumulated. After the
blobs are swallowed into the black hole, the current sheet in
the BSS channel is rarefied. The soft X-ray luminosity
begins to decrease because X-ray–emitting gas is depleted.
The largest magnetic reconnection takes place in the rarefied
current sheet by loop elongation or by loop interaction.
Since the released magnetic energy is converted to heat,
X-ray luminosity will suddenly increase and then decay
exponentially. In order to compute the light curve after
magnetic reconnection, we will have to include the effects of
heat conduction along the magnetic loop, which may evapo-
rate the disk material (see the numerical simulation of solar
flares by Yokoyama & Shibata 2001). We would like to
report the results of such simulations in the future.

The BSS magnetic fields in the innermost region of black
hole accretion disks contribute to the angular momentum
transport of the disk material. In this region, angular
momentum transport due to this ordered spiral magnetic

fields is more efficient than the angular momentum trans-
port by turbulent magnetic fields.

The dynamical effects of magnetic fields in the plunging
region of black hole accretion flows have been investigated
analytically by Krolik (1999), Gammie (1999), and Agol &
Krolik (1998, 2000) and have been simulated by Hawley &
Krolik (2001, 2002) and Krolik & Hawley (2002). Our
numerical results support their conclusion that the ratio of
stress to pressure (!) has a systematic gradient with radius
and has larger values well inside the plunging region.

In the innermost region of the disk, the accretion flow
is dominated by radial advection. The radial structure of
the innermost region ($ $ 10rg) of accretion flow
obtained by three-dimensional MHD simulations
approaches the global transonic solution of optically thin
disks with the viscous parameter ! ! 0:1 (e.g., Narayan,
Kato, & Honma 1997). Direct numerical simulations such
as the one we present in this paper have the potential to
do much more than seek agreement with !-models. They
can predict the time variation of black hole accretion
flows without assuming the phenomenological !-parame-
ter. In order to confirm the applicability of numerically
obtained accretion flows to black hole candidates, it is
essential to compute the X-ray spectrum from numerical
results and compare them with observations. We would
like to report the results of such analysis in subsequent
papers.
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Fig. 16.—Time variation of the X-ray luminosity computed by the
simulation. The solid curve shows the Joule heating rate. The dashed curve
shows the soft X-ray luminosity by bremsstrahlung.

Fig. 17.—Schematic picture of the mechanism of X-ray shots. Soft X-ray
excess precedes the hard X-ray flare.
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dominates in the density distribution. Figure 4 shows a
three-dimensional structure of magnetic field lines at
t ¼ 30; 590 around the surface of the innermost region
($ < 10) of the disk. White curves show the magnetic field
lines. The yellow plane shows the equatorial plane, and the
blue surface is the isosurface of the density (! ¼ 0:4). Mag-
netic field lines have significant z-components and show hel-
ical structure near the surface of the disk. Matter swirls into
the black hole along these field lines. Bisymmetric spiral
magnetic fields are created owing to the infall of the disk
material.

3.2. Time Evolution and AngularMomentum Redistribution

The amplification of magnetic fields and its saturation
occurs similarly to those reported by Hawley & Krolik
(2001, 2002). Figure 5a shows the time evolution of the ratio

of the gas pressure to magnetic pressure " ¼ hPi=hB2=8#i,
where the angle brackets mean the volume average. The
solid curve and the dashed curve show the average in the
inner region (4 " $ " 10, 0 " z " 1) and in the outer region
(20 " $ " 40, 0 " z " 3), respectively. The disk stays in a
quasi–steady state with " # 10 for timescales much longer
than the dynamical timescale. Figure 5b shows the time evo-
lution of the ratio of the Maxwell stress to pressure
$B $ %hB$B’=4#i=hPi averaged in the inner region and in
the outer region. We found $B ’ 0:1 in the inner region and
$B ’ 0:02 in the outer region. Figure 5c shows the time var-
iation of the accretion rate at $ ¼ 2:5. The accretion rate
increases with time even at the end of simulation because
much mass is still stored in the original torus ($b # 50). It is
beyond the scope of this paper to continue simulations on
timescales long enough for the black hole to accrete most of
the mass of the initial torus.

Fig. 3.—Equatorial density distribution (color scale) and magnetic field lines projected onto the equatorial plane (gray curves) at t ¼ 30; 590. (a, b) Global
structure inside 60rg. (c, d ) Inner region inside 10rg. The color scale of logarithmic density log ! is shown at the bottom of each panel.
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1.3. Poynting-Dominated Plasma
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2.1 Magnetic Reconnection

δ/L = 1/√S too thin…

Assumptions: steady flow and uniform resistivity  
         (Sweet-Parker model)
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Sweet-Parker Model

 uin ~ cA / √ S	
     S = L cA / η

In many astrophysical objects, 

  uin ~ cA / √ S << cA

very slow ....

ref) Sweet, (1958)	
      Parker, (1957; 1963)

     S = L cA / η ~ L/lmfp>> 1

Reconnection rate: 



2.2. Conditions for Fast Reconnection

ρinvinL = ρoutvoutδ (1)
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strong compression

fast outflow
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(strong dissipation)
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2.3. Relativistic Effects on Reconnection

density=ρ0 γ	
transfer more matter	

with relativistic velocity

kB T/mc2 > 1, γ > 1	
= large inertia	

        strong beaming	
=>decelerate…	
    thin sheet…

ref) Lyutikov&Uzdensky 2003, ApJ 589, 893  	
      Lyubarsky, (2005), ApJ, 358, 113.	
      Zenitani etal, (2009), ApJ 696, 1385.
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2.4. Reconnection Jet Acceleration

non-adiabatic

Non-thermal	
(collisionless/cooling)	

kinetic energy dominated

thermal plasma	
equipartition between  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superposition of critical sheets (Sc~104)	
=> very fast ! (vR/cA~1/√Sc ~ 0.01)

3.1. Plasmoid-Chain

Plasmoid’s growth rate	
in Sweet-Parker sheets

ρinvinL = ρoutvoutδ (1)
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ref ) Shibata & Tanuma, 2001,  EPS, 53, 473	
       Loureiro et al. 2007, Phys. Plasmas 14, 100703	
       Bhattacharjee et al., 2009, Phys. Plasmas 16, 112102	
	    Takamoto,  2013, ApJ 775, 50.
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3.2. Lundquist Number Dependence
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Fig. 3.— The plot of the time averaged reconnec-
tion rate ⟨vR/cA⟩ with respect to the Lundquist
number SL. Top: The strongly magnetized case:
σ = 14. Bottom: The weakly magnetized case:
σ = 0.14

resulted by the initially triggered plasmoid. Sim-
ilarly, Using the characteristic wavelength of the
tearing instability, λtearing ∼ δ[δcA/η]1/4, the
characteristic wavelength of the secondary tearing
instability can be obtained as:

λtearing,2nd ∼ L/[(2σin)5/8S3/8
L ] ∝ σ−5/8

in c−3/8
A .

(9)
This also indicates that the plasmoid instability
evolves more easily as the background magnetiza-
tion parameter becomes larger. Note that Eq. (9)
means background plasma with larger magnetiza-
tion parameter demands smaller Lundquist num-
ber with respect to the sheet length for the plas-
moid instability due to the smaller characteristic
wavelength of the instability. This also supports
our numerical results, Figs. 3, which indicates
the critical Lundquist number becomes smaller as
the magnetization parameter of the background
plasma becomes larger.

As is pointed out in (Uzdensky et al. 2010),
the reconnection rate of the plasmoid-chain can
be written as, vR/cA = 1/

√
Sc, using the relation

of the Sweet-Parker sheet. If we use the above

critical values, Sc = 3 × 103, in the strongly mag-
netized case, the reconnection rate is ∼ 0.02cA,
which agrees with the indicated values in the top
panel of Figs. 2.

4.3. Evolution of Plasmoid Structure

Fig. 4.— Snapshots of the density profile of the
initially triggered plasmoid in the case of σ = 1.4.
The left panel is at t = 340tA and the right panel
is at t = 390tA.

Figs. 1 show that the aspect ratio of plas-
moids takes different value depending on the mag-
netization parameter σ; the aspect ratio seems to
be shorter as the magnetization parameter σ in-
creases. This can be explained as follows. The left
panel of Figs. 4 is the density profile of a plasmoid
at t = 340tA. This figure shows its aspect ratio is
about 14 : 1. The right panel of Figs. 4 is the den-
sity profile of the same plasmoid at t = 390tA We
find that the plasmoid size in z-direction shrinks
by slow shocks. These slow shocks are generated
by the steepening of slow waves which are induced
by collisions to another plasmoids. In the case of
Figs. 4, these slow waves are generated by the
collision to the plasmoid at y ∼ 48δ in the left
panel. As these slow shocks propagate across the
plasmoid, the upstream plasma in the plasmoid
is compressed and the plasmoid size shrinks in z-
direction. Figs. 5 are the density configuration of
the plasmoid triggered by the initial perturbation
of runs B1, B2 at the time just before escaping

6
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Reconnection Rate becomes 
independent of Lundquist number SL

σ=15 σ=0.1

Sc~4×103
Sc~104

when SL > SL,C: critical value	
   at which Plasmoid instability occurs

SL SL

ref ) M.Takamoto, 2013,  ApJ, 775, 50.
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3.3. 3D Turbulent Sheets
ρinvinL = ρoutvoutδ (1)
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=

ρout

ρin
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ref )  Lazarian & Vishniac (1999), ApJ, 517,700	
       Higashimori+, (2013), PRL 110, 255001



3.4. Theoretical Explanation
ref )  Lazarian & Vishniac (1999), ApJ, 517,700	
        Eyink, Lazarian, Vishniac, (2011), 	
            ApJ, 743, 51.

The Astrophysical Journal, 743:51 (28pp), 2011 December 10 Eyink, Lazarian, & Vishniac

Figure 3. Lagrangian trajectories that start in the ball of radius ρ around space
point x at time t move backward in time to t0, explosively separating to a field-
perpendicular distance ∆x⊥ ∼ (ε|t − t0|3)1/2 which is independent of ρ for
|t − t0| ≫ (ρ2/ε)1/3.

above Equation (48) is realistic at leading order for collisionless,
magnetized plasmas at scales larger than the ion gyroradius ρi

(Kulsrud 1983), while the smoothness scale ℓd set by field-
perpendicular viscosity and resistivity is often of the same order
or smaller than ρi . Thus, our assumptions are quite realistic.
Because of the cutoff ℓd , flux-freezing in the standard sense
must, in fact, be valid. How then can we claim that it becomes
stochastic? To see this, consider the magnetic field observed at
some finite space resolution ρ:

Bρ(x, t) =
∫

d3r Gρ(r)B(x + r, t), (49)

where we have introduced a coarse-graining kernel Gρ to
represent the smearing effect of the observation over a ball
of radius ρ around the space point x. We shall assume below
that ℓd ≪ ρ ≪ Li , the scale of the largest turbulent eddies.
Thus, ρ ! ρi satisfies these conditions. Applying the standard
Lundquist formula for the frozen-in magnetic field, one obtains

Bρ(x, t) =
∫

B(a, t0)·∇axt,t0 (a)
det(∇axt,t0 (a))

∣∣∣∣
xt,t0 (a)=x+r

Gρ(r). d3r. (50)

The Lagrangian particle trajectories that appear in this formula
start in the ball of radius ρ around x at time t and then follow
the flow velocity u backward in time to t0, as illustrated in
Figure 3. When ρ lies in a GS95 turbulent inertial range,
then the trajectories explosively separate to a perpendicular
distance ∆x⊥ ∼ (ε|t − t0|3)1/2, independent of ρ at times
|t − t0| ≫ (ρ2/ε)1/3.

The result is indistinguishable from the stochastic Lundquist
formula (35) which was derived in Section 4.1 using the
stochastic representation of Laplacian resistivity. In fact, in a
formal mathematical limit taking first ℓd → 0, then ρ → 0,
the Lagrangian trajectories in Equation (50) remain stochastic
and the two formulae coincide. This is a rigorous theorem for
the Kazantsev–Kraichnan dynamo model, where it has been
proved that the ensemble of stochastic Lagrangian trajectories
as constructed above is precisely the same as that obtained for
the λ → 0 limit (E & vanden Eijnden 2000). Stochasticity
of flux-freezing in not due intrinsically to resistivity or other
microscopic plasma mechanisms that “break” field lines but
is, instead, a fundamental consequence of turbulent Richardson
diffusion.

Higher-order terms in the generalized Ohm’s law
Equation (47) that do not appear in the ideal Equation (48) will
lead to melding and merging of field lines at scales < ρi . How-
ever, the above argument strongly suggests that these details
of the microscopic plasma processes do not affect the dynam-
ics at scales larger than ρi . In some cases this can be shown
more analytically by defining a suitable “motion” of field lines
consistent with the induction equation. For example, the formu-
lation in Section 4.1 based on addition of a Brownian motion to
the Lagrangian particle dynamics, Equation (31), can be carried
over to certain instances of the generalized Ohm’s law (see in
particular Eyink 2009 for the HMHD equations). This approach
is used in Appendix B to argue that neither the Hall effect
nor Ohmic resistivity will have any significant influence on the
inertial-range turbulence dynamics at large enough scales. The
Hall term, for example, does not affect the dynamics at scales
much greater than δi = ρi/

√
βi , the ion skin depth. Unfortu-

nately, it is difficult to extend this type of argument to all cases
of the generalized Ohm’s law because it is not known how to
define a “motion” of field lines consistent with the induction
equation for the general case.

On the other hand, there is a different argument which applies
in general and leads to the same conclusion that flux-freezing
must be intrinsically stochastic in turbulent plasmas. While the
“motion” of magnetic field lines is a conventional and somewhat
arbitrary concept, the motion of plasma is perfectly well defined
within the validity of an MHD description. Plasma fluid moves
with the bulk velocity u. Thus, field lines may be tracked
by “tagging” the lines with plasma fluid elements and then
following these as Lagrangian fluid particles (Newcomb 1958;
Axford 1984). In the case of a smooth, laminar solution of the
ideal MHD equations, this is unambiguous because of Alfvén’s
theorem: two plasma particles which start on a certain field line
must share a field line for all times. One can then, by convention,
consider this as the “same” field line as the initial one. This
approach fails for a non-ideal Ohm’s law,

E +
1
c

u×B = R, (51)

where R represents all of the terms on the RHS of Equation (47)
other than the motional term. Clearly, R is just the electric field
in the rest frame of the plasma flowing with the bulk velocity
u. EMF due to these non-ideal terms leads to time-dependent
magnetic flux in the rest frame, corresponding to a slippage of
field lines. This vitiates the usual method to assign an identity
to individual field lines over time, because plasma elements
shift their attachments to lines. Charged particles move along
magnetic field lines, but two plasma elements that start on one
field line will sit on distinct field lines at later times.

Now consider a turbulent plasma where the non-ideal term
is numerically “small” but the plasma has a turbulent inertial
range in which the velocity field u is rough, with a power-
law energy spectrum extending down to a smallest length scale
ρ0 ≈ ρi . The slight shifts in line-attachments are enormously
amplified by explosive relative advection, as illustrated in
Figure 4. Consider a single magnetic field line in this plasma
and, along it, two plasma fluid particles at initial locations
a and a′. Due to a combination of the non-ideal field R
and advection by sub-inertial-range eddies, the two plasma
particles will end up on distinct field lines displaced a distance
|x(a′, t) − x(a, t)| = ρ0 apart in a time τ0 which is generally
microscopically small compared with the eddy turnover time
tL. Because of Equation (44), the two plasma elements will
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FIG. 1.ÈGeometry of magnetic Ðeld lines in three-dimensional recon-
nection. The reconnected lines stretch and carry the conducting plasma
with them. The plasma is also redistributed along the Ðeld lines.

model oppositely directed magnetic Ðelds are brought into
contact over a region of size Magnetic Ðelds reconnectL

x
.

along a very thin Ohmic di†usion layer andL
y
B g/Vrec,Ñuid is ejected from this layer at a velocity of order in aVAdirection parallel to the local Ðeld lines. The layer in which

Ohmic di†usion takes place is usually referred to as the
current sheet. Here we will refer to the volume where the
mean magnetic Ðeld strength drops signiÐcantly as the
reconnection zone, in order to allow for the presence of
collective e†ects that may broaden the reconnection zone

FIG. 2.È(a) Structure of the reconnection region when the Ðeld is turb-
ulent. Local reconnection events happen on the small-scale rather thanj

Aand this accelerates reconnection. The plasma is redistributed along theL
xÐeld lines in a layer of thickness Sy2T1@2, which is much thicker than the

region from which the ejection of the magnetic Ðeld takes place.Dj
M(b) Local structure of magnetic Ðeld lines.

well beyond the current sheet. The reconnection velocity in
the Sweet-Parker picture is determined by the constraint
imposed by the conservation of mass condition Vrec L

x
B

Although this model is two-dimensional, it can beVA L
y
.

generalized to three dimensions by allowing the two mag-
netic Ðeld regions to share a common Ðeld component,
which has the e†ect of rotating them so that they are no
longer exactly antiparallel. This has no e†ect on the Sweet-
Parker reconnection process (see Fig. 1). However, it does
change the nature of the constraint somewhat. In addition
to ejecting matter from the reconnection zone, we must also
allow for the ejection of the magnetic Ñux due to the
common Ðeld component. This is, in e†ect, the same con-
straint in this case.

We consider the case in which there exists a large-scale,
well-ordered magnetic Ðeld of the kind that is normally
used as a starting point for discussions of reconnection. This
Ðeld may, or may not, be ordered on the largest conceivable
scales. However, we will consider scales smaller than the
typical radius of curvature of the magnetic Ðeld lines, or
alternatively, scales below the peak in the power spectrum
of the magnetic Ðeld, so that the direction of the unper-
turbed magnetic Ðeld is a reasonably well deÐned concept.
In addition, we expect that the Ðeld has some small-scale
““ wandering ÏÏ of the Ðeld lines. On any given scale the
typical angle by which Ðeld lines di†er from their neighbors
is / > 1, and this angle persists for a distance along the Ðeld
lines with a correlation distance across Ðeld lines.j

A
j
MThe modiÐcation of the mass conservation constraint in

the presence of stochastic magnetic Ðeld component is self-
evident. Instead of being squeezed from a layer whose width
is determined by Ohmic di†usion, the plasma may di†use
through a much broader layer, (see Fig. 2),L

y
D Sy2T1@2

determined by the di†usion of magnetic Ðeld lines. The
value of Sy2T1@2 can be determined once a particular model
of turbulence is adopted (see ° 3), but it is obvious from the
very beginning that this value is determined by Ðeld wan-
dering rather than Ohmic di†usion as in the Sweet-Parker
case.

In the presence of a stochastic Ðeld component, magnetic
reconnection dissipates Ðeld lines not over their entire
length but only over a scale (see Fig. 2b),DL

x
j
A

> L
xwhich is the scale over which the magnetic Ðeld line deviates

from its original direction by the thickness of the Ohmic
di†usion layer If the angle / of Ðeld devi-j

M
~1 B g/Vrec,local.ation does not depend on the scale, the local reconnection

velocity would be and would not depend on resis-DVA /
tivity. We claim in ° 3 that / does depend on scale. There-
fore, the local reconnection rate is given by theVrec,localusual Sweet-Parker formulae but with instead of i.e.,j

A
L

x
,

It is obvious from Figure 2a thatVrec,local B VA(VA j
A
/g)~1@2.

magnetic Ðeld lines will undergo reconnectionDL
x
/j

Asimultaneously (compared with a one-by-one line reconnec-
tion process for the Sweet-Parker scheme). Therefore, the
overall reconnection rate may be as large as Vrec,global Bwhich means that the reconnectionVA(L

x
/j

A
)(VA j

A
/g)~1@2,

efficiency critically depends on the value of Morej
A
.

realistically, we will Ðnd that there are other global con-
straints that end up determining the actual global reconnec-
tion speed.

The relevant values of and Sy2T1@2 depend criticallyj
Aon the magnetic Ðeld statistics. Therefore, in the next

section we will brieÑy explore the expected properties of
magnetic turbulence.

λ|| ~ L

λ⊥ ~ δ

eddy

Larger mass 
ejection

faster speed!! dissipation 
region
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3.5. Relativistic Turbulent Reconnection

Poynting Dominated(σ = 5) Matter dominated(σ =0.04)

• kB T/mc2 = 1	
• driven turbulence  
     injected around central region 

B0B0

ref) Takamoto+ (2015), ApJ, 815, 16.
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3.6. Lundquist Number Dependence

3

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  0.2  0.4  0.6  0.8  1

v R
 / 

c A

vinj/cA

σ=0.04
σ=0.1
σ=0.5
σ=1
σ=5

 0.01

 0.1

 100  1000  10000

v R
 / 

c A

Lundquist number: S
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FIG. 2. Observed reconnection rate in its steady state.
Top: Reconnection rate with respect to the injected turbu-
lent velocity. Bottom: Reconnection rate with respect to the
Lundquist number: S ≡ LcA/η.

the Lundquist number, and determined by the turbulent
strength. Note that the obtained maximum reconnection
rate is very fast, vin/cA ∼ 0.05, and even comparable to
the Petschek reconnection rate [23, 24].

IV. THEORETICAL EXPLANATION

The obtained reconnection rate in Figure 2 shows an
interesting behavior owing to compressibility which can-
not be explained by incompressible theory, Equation (2).
In the following, we give an explanation for the satu-
ration and depression of the reconnection rate in high
turbulence Alfvén Mach number regime. Equation (1)
indicates the compressible effects can be divided into 2
parts: (1) the density ratio between sheet and inflow re-
gion ρs/ρin; (2) decrease of the sheet width δ/L by an
effect of the compressible MHD turbulence. Note that
δ is the actual sheet thickness determined by the turbu-
lence which is different from the initial thickness λ.

We begin with discussing the density ratio. Figures 3
are the plots of ρs/ρin with respect to the injected tur-
bulence velocity in the matter and Poynting dominated
cases σ = 0.04 and 5, respectively. They show that
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vinj/cA

σ=0.04

FIG. 3. The density ratio between that of inflow and sheet
region: ρs/ρin. The ratio decreases with increasing the turbu-
lent strength due to the compressible effect. Top: Poynting
dominated case: σ = 5. Bottom: Matter dominated case:
σ = 0.04.

the density ratio decreases linearly with the turbulent
strength. This can be understood from the conservation
of energy flux:

ρinc2 (1 + σ) vinL+ρin(1+2σ)ϵinjlxlz =
(

ρshsc
2γ2

s +
B2

s

4π

)
vsδ,

(4)
where we assumed a cold upstream plasma with non-
relativistic inflow, for simplisity. Note that the 2nd term
in left-hand side of the equation expresses kinetic and
electric field energy of the injected turbulence ; The
turbulent components in the sheet is assumed negligi-
ble comparing with the other terms. Using the pressure
balance: ps = B2

in/8πγ2
in, the steady state condition:

cEy = Binvin = Bsvs, and the equation of continuity,
Equation (1), this equation reduces to:

(1 + σ)ρsγsvsδ + ρin(1 + 2σ)ϵinjlxlz

=

[
2ρinσγ2

s +
B2

in

v2
s

(
δ

L

ρs

ρin
γsvs

)2
]

vsδ. (5)

Neglecting a small term proportional to (δ/L)2 ≪ 1, we

no turbulence

turbulence

idealresistive
fast & resistivity independent 

mechanism



3.7 Necessary Turbulence Energy in Poynting-Dom. 
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if we set: 

vturb
cA
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✏turb
✏B

⌘ ⇢0hv2turb/2

B2
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4⇡⇢0hc2

◆
(3)

1

if we assume: vturb/cA= 0.3, σ = 10, 

εturb /εB ~ 0.01
just 1% of magnetic field energy is sufficient!!

3-Mach Number



number of particles is enough to trigger the plasmoid
instability.

3. SIMULATION RESULTS

3.1. Time Evolution and Reconnection Rate

The primary interest of this study is to understand how
small-scale turbulence affects the reconnection of a large-scale
“mean” magnetic field. To separate the large-scale mean field
from small-scale fluctuations, the former must be determined
through an averaging procedure (or coarse-graining). Two
commonly used definitions for the mean field are ensemble
average and time average. The former is obtained via averaging
over the ensemble of all turbulent realizations (e.g., from
different initial random noise) of the same setting, whereas the
latter is obtained by averaging over an appropriate period of
time. If we further assume ergodicity (see, e.g., the discussion
in Frisch 1995), ensemble average and time average are nearly
equivalent. In practice, a time average is often adopted, because
an ensemble average requires, by definition, many different
realizations of the same setup, which can be prohibitively
expensive. However, because the system under consideration
has a translational symmetry along the z direction, i.e.,
z-dependence only arises as a result of instabilities, after
averaging over the entire ensemble, the mean field must be
independent of z. Therefore, instead of using a time average,
we adopt the convention of using the average of a physical
variable f over the entire z direction as the mean field f̄ , which
is taken as a proxy for the ensemble average. Once the mean
field is determined, the fluctuation is obtained by the remaining
part f f f˜ ¯w � . This procedure ensures that the mean magnetic
field B̄ is independent of z, and, consequently, we may
calculate the 3D reconnection rate in terms of B̄ in the same
way as in 2D cases. We should note, however, that this
procedure is not applicable for more general situations when
the initial condition is dependent on all three coordinates. In
that case, an appropriate definition for the mean field will be a
time average over a period of time sufficiently longer than
typical turbulence eddy turnover time, but shorter than
evolution timescales of the large-scale field. The resulting
mean field in general will depend on all three coordinates.
Nevertheless, a general definition of reconnection rate in full
3D configurations remains a topic of debate, which is beyond
the scope of this work. See, e.g., the discussions in Daughton
et al. (2014), Huang et al. (2014), Wyper & Hesse (2015), and
the references therein.

We begin by examining the time evolution and development
of turbulence in the reconnection layer. Figure 2 shows three
representative snapshots of the reconnection layer, where color
shading shows the component of the electric current parallel to
the magnetic field J bJ · ˆw& on three x−y slices, as well as on
isosurfaces of the fluctuating part of the magnetic energy

BE 2m
2˜ ∣ ˜ ∣� . These snapshots also show samples of magnetic

field lines, where field lines with the same color originate from
a selected small region as indicated by an arrow of the same
color. Here the isosurfaces in each snapshot correspond to a
single value of E ;m˜ they are employed as a means to visualize
the development of complex structures as the instabilities
evolve. The color shaded parallel electric current J bJ · ˆw& is
employed as a proxy for showing where non-ideal effects are
concentrated. Panel (a) shows an early phase when the
plasmoid instabilities are developing, at t=0.9. It shows that

magnetic fluctuations initially develop preferentially at oblique
angles, at locations slightly away from the midplane. At this
time, the Sweet–Parker current sheet is still largely unper-
turbed. Panel (b) shows a snapshot at t=1.4, when the
instabilities have further developed, and some coherent
structures start to become visible on the x−y slices of the
JP profiles. Panel (c) shows a snapshot at t=3.5, when the
instabilities have developed into a fully turbulent state. At this
time, the isosurfaces of Em˜ form complicated structures, which
appear to align preferentially with magnetic field lines. This is
an important feature that we will come back to in a later
discussion. The x−y slices of JP also show blob-like
structures, which give the impression that they may be cross
sections of magnetic flux ropes. However, tracing field lines
from the blobs shows that not to be the case. The two sets of
field lines (indicated by yellow and green colors, respectively)
in panel (c) both originate from a blob-like structure, but the
field lines clearly show the influence of the global magnetic
shear across the reconnection layer. Each set of field lines
roughly separates into two bundles, one approximately follows
the magnetic field above the reconnection layer, while the other
approximately follows the magnetic field below the layer. In

Figure 2. Snapshots of the 3D simulation at three representative times. Color
shading shows the component of the electric current parallel to the magnetic
field J bJ · ˆw& on three x−y slices, as well as on isosurfaces of the fluctuating
part of the magnetic energy BE 2m

2˜ ∣ ˜ ∣� . These snapshots also show samples
of magnetic field lines, where field lines with the same color are originated
from a selected small region as indicated by an arrow of the same color. These
plots show the entire x and z dimensions of the simulation box, but only the
region −0.05�y�0.05 along the y direction.
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3.8. Self-Generated Turbulence in Sheets?

parameter k v k V r F r Vl A
w

A2
1 2( )D w _? ?& & as an indicator of

the strength of nonlinear interaction. Here the wave number
parallel to the local magnetic field kP is proportional to the

semimajor axis rP of a contour, and likewise the perpendicular
wave number k⊥ is proportional to the semiminor axis r⊥.
Velocity fluctuation at the corresponding length scales is given
by v Fl

w
2

1 2( )_ , as the plasma density ρ;1. It can be inferred
from Figures 10(a) and (d) that χ is an O(1) quantity over a
broad range of scales, indicating that the system is in a strongly
nonlinear regime.
Structure function diagnostics also allow us to make

comparisons with an important prediction of the Goldreich &
Sridhar (GS) theory of incompressible MHD turbulence
(Goldreich & Sridhar 1995, 1997), namely that eddies become
increasingly more anisotropic at smaller scales. More precisely,
GS theory predicts a scale-dependent anisotropy relation
k k2 3_ ?& , which is based on the assumption of critical balance,
i.e., the condition k V k vA l_ ?& . The scale-dependent anisotropy
relation k k2 3_ ?& has been confirmed by Cho & Vishniac
(2000) by using two-point structure function diagnostics. Here
we repeat their procedure by plotting the relationship between
the semiminor axis r k1_? ? and the semimajor axis r k1_& &
of contours of structure functions. The results are shown in
Figures 10(c) and (d) for y=0 and y=0.002, respectively.
The two dashed lines in each panel represent the relations
k k_ ?& (scale-independent) and k k2 3_ ?& (GS theory), for
reference. In both panels, the relationships between rP and r⊥
appear to be more consistent with the scale-independent
relation k k_ ?& than the GS theory k k2 3_ ?& . Therefore, we
conclude that in this self-sustained turbulent system, the eddy
anisotropy is nearly scale-independent.

4. DISCUSSION AND CONCLUSION

In conclusion, our simulation results indicate that 3D
plasmoid instabilities in a reconnection layer can indeed lead
to a self-sustained turbulent state. This state is qualified as
turbulent because it exhibits key ingredients of turbulence,
namely, energy cascade and development of an extended
inertial range. In addition, an important feature of MHD
turbulence, namely anisotropy of eddies with respect to local
magnetic field, is also observed. However, the turbulent state is
also highly inhomogeneous; therefore, the applicability of
conventional MHD turbulence theories or phenomenologies
becomes questionable. In particular, we find the eddy
anisotropy to be nearly scale-independent, in contrast to the
prediction of k k2 3_ ?& by the Goldreich & Sridhar theory. This
discrepancy may be attributed to several factors. (1) The
background field is strongly sheared. In our simulation, the
mean magnetic field rotates approximately 90° across the
reconnection layer, whereas most MHD turbulent theories
assume the presence of a strong uniform guide field or no guide
field at all. (2) Difference in the mechanism of energy cascade.
In the present case, current sheet fragmentation caused by
plasmoid instabilities may play important roles in energy
cascade, whereas conventional MHD turbulence theories
usually assume that energy cascade is caused by interactions
between counter propagating Alfvén waves. (3) The turbulence
is embedded in bi-directional Alfvénic mean outflow jets;
therefore, disturbances in the reconnection layer will be ejected
in Alfvénic timescales. This distinct feature may interfere with
the energy cascade process and could be the reason why the
inertial range power-law spectra in our simulation are steeper
than in most homogeneous MHD turbulence situations. These
considerations suggest the necessity to develop new

Figure 8. (a) Kinetic and magnetic energy spectra in Fourier space, integrated
over the range from y=−0.05 to 0.05 at t=3.5. Both spectra are
qualitatively similar and highly anisotropic. Fourier modes are mostly excited
within the region k kx z∣ ∣ ∣ ∣2 , as dictated by the resonant condition k B 0· � .
(b) One-dimensional spectra at t=0.9, t=1.1, and t=3.5 obtained by
integrating over the azimuthal direction on the kx − kz plane.

Figure 9. Eddy turnover times estimated by scale-dependent e-folding decay
times of autocorrelation functions R k,v ( )U and R k,B ( )U .
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ref) Huang & Bhattacharjee (2016), ApJ 818

different turbulent law 	
caused by  

different injection mechanism	
and non-trivial background?



3.9.  Relativistic Self-Generated Turbulence in Sheets

2D simulation 3D simulation



3.10. some results



3.11. Model of MR in global 3D simulation

if 2D & S>104

if 3D & strong turbulence (vturb>0.1cA)

if 3D & σ > 1 & high S

if strong cooling or radiation dominated

if MHD

if collisionless

ideal MHD

high-resolution

new formalisms (cosmic-ray, anisotropy, PIC, etc)

resistive RMHD with proper resistivity
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Summary

• We investigated various kinds of relativistic reconnection 	
    in Poynting-dominated plasma	
"
•We found that the reconnection rate is highly enhanced 	
    ( dissipation time ~ 20 - 30 Alfvén crossing time )	
	      —Turbulent Reconnection : vR/cA ~ 0.05	
"
• Reconnection rate becomes independent of 	
      the Lundquist number (resistivity)	
"
• Only 1% of magnetic field energy is sufficient 	
     to drive turbulent reconnection in high-σ jets!	
"

• Compressible effect becomes important in high-σ plasma.



O Ma Ke



Relativistic Jets ref) MT+,(2015), ApJ, 812, 15	
      Rieger & Aharonian, (2012), MPLA 27, 30030

rMRI vin

current sheets
(reconnection cites)

current sheets 
(reconnection sites)

44 Lazarian et al.

Fig. 21 Left panel. In the model by Lazarian and Medvedev (2015) magnetized jet with
spiral magnetic field is being ejected. The spiral undergoes kink instability which results
in turbulent reconnection. Right panel Numerical simulations of 3D relativistic jet that is
subject to the kink instability and turbulent reconnection. From Mizuno et al (2015).

More recently, Kadowaki et al (2015) revisited the aforementioned model
and extended the study to explore also the gamma-ray flare emission of these
sources. The current detectors of high energy gamma-ray emission, partic-
ularly at TeVs (e.g., the FERMI-LAT satellite and the ground observato-
ries HESS, VERITAS and MAGIC) have too poor resolution to determine
whether this emission is produced in the core or along the jets of these sources.
This study confirmed the earlier trend found in GL05 and de Gouveia Dal
Pino et al (2010b) and verified that if fast reconnection is driven by turbu-
lence, there is a correlation between the calculated fast magnetic reconnection
power and the BH mass spanning 1010 orders of magnitude. This can explain
not only the observed radio, but also the gamma-ray emission from GBHs
and low luminous AGNs (LLAGNs). This match has been found for an ex-
tensive sample of more than 230 sources which include those of the so called
fundamental plane of black hole activity (Merloni et al 2003) as shown in
Figure 23. This figure also shows that the observed emission from blazars
(i.e., high luminous AGNs whose jet points to the line of sight) and GRBs
does not follow the same trend as that of the low luminous AGNs and GBHs,
suggesting that the observed radio and gamma-ray emission in these cases is

Kink turbulence

The Astrophysical Journal, 728:90 (7pp), 2011 February 20 Mizuno et al.

(a)

Figure 1. Two-dimensional images of (Case A): the gas pressure in the xz-plane at y = 0 for (a) t = 6R/c, (c) 11R/c, the gas pressure in the yz-plane at x = 0 for
(b) t = 6R/c, (d) 11R/c, the magnetic field By in the xz-plane at y = 0 for (e) t = 3R/c, (g) 6R/c, (i) 9R/c, (k) 12R/c, and Bx in the yz-plane at x = 0 for (f)
t = 3R/c, (h) 6R/c, (j) 9R/c, and (l) 12R/c. Arrows indicate the velocity in each plane.
(A color version of this figure is available in the online journal.)

specific internal energy density, and the adiabatic index is set to
Γ = 4/3. The specific enthalpy is h ≡ 1 + e/c2 + p/ρc2.

The above configuration was shown to be neutrally stable
with respect to axisymmetric perturbations but unstable to the
helical modes (Begelman 1998). Therefore, we choose an initial

small radial velocity perturbation with the form given by

vx,y/c = δv

c
e−r

N∑

k=1

ak;x,y

N
sin

(
2πkz

Lz

+ φx

)
, (5)

3

ref) Mizuno+, (2011), ApJ

MRI Turbulence



2.1. Relativistic Magnetohydrodynamics

Basic equations of RMHD: 

∂t(ργ) + ∂i(ργvi) = 0, (1)

∂t(ρhtotγ
2vj − b0bj) + ∂i(ρhtotγ

2vivj + ptotδ
ij − bibj) = 0, (2)

∂t(ρhtotγ
2 − ptot − (b0)2) + ∂i(ρhtotγ

2vi − b0bi) = 0, (3)

∂tB
j + ∂i(viBj − Bivj) = 0, ∂iB

i = 0. (4)

1

∂t(ργ) + ∂i(ργvi) = 0, (1)

∂t(ρhtotγ
2vj − b0bj) + ∂i(ρhtotγ

2vivj + ptotδ
ij − bibj) = 0, (2)

∂t(ρhtotγ
2 − ptot − (b0)2) + ∂i(ρhtotγ

2vi − b0bi) = 0, (3)

∂tB
j + ∂i(viBj − Bivj) = 0, ∂iB

i = 0. (4)

htot = 1 + ϵ +
b2

ρ
, ptot = pgas +

b2

2
(5)

1

features: • correction from Lorentz factor and inertia of energy	
• tension and pressure from magnetic field



2.2. Relativistic Effects:

Alfven velocity:

Electric Field:

qE ∼ (∇E)E ∼ v2B2/R ∼ pBv ·∇v (1)
j × B ∼ (∇× B − ∂tE) × B ∼ (∇× B − ∂tvB) × B (2)

∼ (∇× B) × B − pB∂tv (3)

1

  

  

  
  

cA/c =
B√

4πρh + B2
< 1 (1)

1

Lorentz contraction:

lab frame density: ρ ⇒ ρ γ 

  

  larger density

sub-luminal

 inertia from 
magnetic field



2.5. DTM Temperature dependence

Thermal synchrotron radiation from DTM 5

Figure 4. The temperature profiles log
10

[k
B

T/mc

2] during the
double tearing burst phase of the run SB6. The top and bottom
panel show just before and after the burst phase, respectively.

our Paper 2). The plasmoid region becomes very dense and
also very hot with temperature as high as k

B

T & �mc

2 be-
cause of the compression by nearly Alfvénic reconnection
flows along the sheet (Takamoto 2013). After the explosive
phase, the magnetic field between the two original sheets
is forced to reconnect, and dissipate its energy into kinetic
bulk flow and thermal energy. Since the motion inside of
the reconnected region becomes highly stochastic, the re-
sulting kinetic bulk flow energy rapidly dissipated into the
thermal energy. In particular, the random motion induces
strong compression, and this also increase the temperature
in the plasmoids.

4.2 Synchrotron Energy Spectrum

Next, we investigate the synchrotron energy spectrum using
our numerical results. The typical photon energy for the
synchrotron emission can be written as:

✏

sync

=
3
2
�

2

B

B

q

mc

2

, (4)

where B is the magnetic field strength as measured in the
frame where ✏

sync

is detected, B
q

= m

2

c

3

/e~ is the critical
magnetic field, m the electron mass, e its electric charge, �
the typical Lorentz factor of the electrons and ~ the reduced
Planck constant. Assuming the synchrotron radiation is
mainly emitted by the pair plasma which is in local thermal
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Figure 5. Top: The energy spectrum with various magnetiza-
tion parameter �. Bottom: maximum temperature with respect to
background magnetization parameter. In both case, S = 3200 is
assumed, and the pulsar parameters are r = 50r

L

and �
W

= 300.

equilibrium due to the MHD approximation, the Lorentz fac-
tor in Equation (4) can be expressed for an ultra-relativistic
plasma equation of state as: � ⇠ 3k

B

T/mc

2 ⌘ 3⇥. For later
convenience, we introduced the normalized temperature ⇥.
Note that the temperature T depends on the location in the
simulation box. In the explosive phase, a strong gradient are
formed leading to drastic variation in the temperature profile
from point to point as seen in Figure 4. In the pulsar striped
wind region, the dominant background magnetic field com-
ponent is toroidal and propagates as an entropy wave thus
decreasing with radius r according to, B

0

= B

L

r

L

/r, where
r

L

⇠ 1.5 ⇥ 106 [m] is the radius of the light cylinder and
B

L

⇠ 100[T] the magnetic field strength at r

L

for the Crab
pulsar. The synchrotron photon energy in the fluid comoving
frame becomes

✏̄

sync

⇠ 1.73⇥ 10�4[eV]
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where B̄

0

= B

0

/�
W

is the background magnetic field mea-
sured in the fluid comoving frame, or the simulation frame
and �

W

is the Lorentz factor of the pulsar wind. Finally, the
Lorentz transformation into the pulsar rest frame (observer
frame) gives us

✏

sync,L

=
✏̄

sync

�
W

(1� �

W

cos#)
⌘ �

W

✏̄

sync

(6)
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σ
kBT

mc2
' 7.5� = 7.5

B2

4⇡wc2�2
(1)

1

linear in σ

log10kBT/mc2, σ=120
ref) Takamoto+(2015), MNRAS 454, 2972. 



2.4. Relativistic Plasmoid-Chain
pgas, σ=20

ref )  Takamoto,  (2013), ApJ 775, 50.

The Astrophysical Journal, 775:50 (10pp), 2013 September 20 Takamoto
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Figure 2. Top: the temporal evolution of the reconnection rate in the case of
σin = 14. The blue line at t = tA is the starting time of the plasmoid instability.
The green line at t = 2.2tA is the time when the largest plasmoid leaves the
numerical domain. Bottom: the temporal evolution of the reconnection rate of
runs B1–B4.
(A color version of this figure is available in the online journal.)

the relation of the Sweet–Parker sheet. If we use the above
critical value, Sc = 3 × 103, in the strongly magnetized case,
the reconnection rate is ∼0.02cA, which agrees with the values
indicated in the top panel of Figure 2.

4.3. The Evolution of the Plasmoid Structure

Figure 1 shows that the aspect ratios of plasmoids take
different values, depending on the magnetization parameter
σin; the aspect ratio seems to decrease as the magnetization
parameter σin increases. This result can be explained as follows.
The left panel of Figure 4 is the density profile of a plasmoid
at t = tA. This figure shows that its aspect ratio is about 14:1
and that the inner structure of the plasmoid is very similar to
that of the Petschek reconnection case that was investigated
by Zenitani & Miyoshi (2011). The right panel of Figure 4
is the density profile of the same plasmoid at t = 1.2tA. We
find that the plasmoid size in the z-direction shrinks because
of the appearance of slow shocks. These shocks are generated
by the steepening of slow waves that are induced by collisions
with other plasmoids. In the example shown in Figure 4, slow
waves are generated by collisions with the plasmoid at z ∼ 48δ
in the left panel. As these slow shocks propagate across the
plasmoid, the upstream plasma in the plasmoid is compressed
and the plasmoid size shrinks in the z-direction. Figure 5 shows
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Figure 3. Plot of the time-averaged reconnection rate ⟨vR/cA⟩ over the statistical
equilibrium region with respect to the Lundquist number SL. Top: the strongly
magnetized case: σin = 14. Bottom: the weakly magnetized case: σin = 0.14.
(A color version of this figure is available in the online journal.)

Figure 4. Snapshots of the density profile of the initially triggered plasmoid
in the case of σin = 1.4. The left panel is at t = tA and the right panel is at
t = 1.2tA.
(A color version of this figure is available in the online journal.)

the density configuration of the plasmoid triggered by the initial
perturbation of runs B1 and B2 at a time just before the plasmoid
escapes from the numerical domain. In run B1, σin = 0.14 and
we find that the aspect ratio of the plasmoid maintains its initial
value of approximately 14:1. This result occurs because the

5

reconnection rate 
increase with σ



10. Particle Acceleration by Reconnection

• If Turbulent Reconnection: 

ref) Pino&Lazarian, (2005), A&A 441, 845. δ

L

uin

   uin

   Bin

   Bs
   us

shock-like acceleration

N(E) ∝ E-2.5

• X-point Acceleration:

ref) Zenitani & Hoshino (2001), ApJL, 562, 63. 	
      Bessho & Bhattacharjee (2012), ApJ, 750, 129.	
      Sironi & Spitkovsky, (2014), ApJL, 783, 21. 

direct acceleration  
   by electric field at X-point

N(E) ∝ E-1.4



 Kolmogorov Turbulence
Assumptions: • Homogeneous and isotropic turbulence 

• Steady state

:eddy velocity

: Energy Spectrum

vl = vL(l/L)1/3 ∝ l1/3 (1)

E(k) ∝ k−5/3 (2)

1



 MHD Turbulence (Goldreich-Sridhar model)
Assumptions: • Magnetic Field exists 

• Steady state

eddy-motion 
⊥ B

Circularly polarized 
Alfven wave

Resonanc

k∥cA ∼ k⊥vk (1)

k∥ ∝ k2/3
⊥ (2)

E(k⊥) ∝ k−5/3
⊥ (3)

1

:critical balance

    Features: •eddy is enlarged along B 
"

"

                   •Turbulent motion perpendicular  
                    to B obeys Kolmogolov law 

k∥cA ∼ k⊥vk (1)

k∥ ∝ k2/3
⊥ (2)

E(k⊥) ∝ k−5/3
⊥ (3)

1

k∥cA ∼ k⊥vk (1)

k∥ ∝ k2/3
⊥ (2)

E(k⊥) ∝ k−5/3
⊥ (3)

1



Theoretical Explanation
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Beddy

: MHD turbulence
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FIG. 1.ÈGeometry of magnetic Ðeld lines in three-dimensional recon-
nection. The reconnected lines stretch and carry the conducting plasma
with them. The plasma is also redistributed along the Ðeld lines.

model oppositely directed magnetic Ðelds are brought into
contact over a region of size Magnetic Ðelds reconnectL

x
.

along a very thin Ohmic di†usion layer andL
y
B g/Vrec,Ñuid is ejected from this layer at a velocity of order in aVAdirection parallel to the local Ðeld lines. The layer in which

Ohmic di†usion takes place is usually referred to as the
current sheet. Here we will refer to the volume where the
mean magnetic Ðeld strength drops signiÐcantly as the
reconnection zone, in order to allow for the presence of
collective e†ects that may broaden the reconnection zone

FIG. 2.È(a) Structure of the reconnection region when the Ðeld is turb-
ulent. Local reconnection events happen on the small-scale rather thanj

Aand this accelerates reconnection. The plasma is redistributed along theL
xÐeld lines in a layer of thickness Sy2T1@2, which is much thicker than the

region from which the ejection of the magnetic Ðeld takes place.Dj
M(b) Local structure of magnetic Ðeld lines.

well beyond the current sheet. The reconnection velocity in
the Sweet-Parker picture is determined by the constraint
imposed by the conservation of mass condition Vrec L

x
B

Although this model is two-dimensional, it can beVA L
y
.

generalized to three dimensions by allowing the two mag-
netic Ðeld regions to share a common Ðeld component,
which has the e†ect of rotating them so that they are no
longer exactly antiparallel. This has no e†ect on the Sweet-
Parker reconnection process (see Fig. 1). However, it does
change the nature of the constraint somewhat. In addition
to ejecting matter from the reconnection zone, we must also
allow for the ejection of the magnetic Ñux due to the
common Ðeld component. This is, in e†ect, the same con-
straint in this case.

We consider the case in which there exists a large-scale,
well-ordered magnetic Ðeld of the kind that is normally
used as a starting point for discussions of reconnection. This
Ðeld may, or may not, be ordered on the largest conceivable
scales. However, we will consider scales smaller than the
typical radius of curvature of the magnetic Ðeld lines, or
alternatively, scales below the peak in the power spectrum
of the magnetic Ðeld, so that the direction of the unper-
turbed magnetic Ðeld is a reasonably well deÐned concept.
In addition, we expect that the Ðeld has some small-scale
““ wandering ÏÏ of the Ðeld lines. On any given scale the
typical angle by which Ðeld lines di†er from their neighbors
is / > 1, and this angle persists for a distance along the Ðeld
lines with a correlation distance across Ðeld lines.j

A
j
MThe modiÐcation of the mass conservation constraint in

the presence of stochastic magnetic Ðeld component is self-
evident. Instead of being squeezed from a layer whose width
is determined by Ohmic di†usion, the plasma may di†use
through a much broader layer, (see Fig. 2),L

y
D Sy2T1@2

determined by the di†usion of magnetic Ðeld lines. The
value of Sy2T1@2 can be determined once a particular model
of turbulence is adopted (see ° 3), but it is obvious from the
very beginning that this value is determined by Ðeld wan-
dering rather than Ohmic di†usion as in the Sweet-Parker
case.

In the presence of a stochastic Ðeld component, magnetic
reconnection dissipates Ðeld lines not over their entire
length but only over a scale (see Fig. 2b),DL

x
j
A

> L
xwhich is the scale over which the magnetic Ðeld line deviates

from its original direction by the thickness of the Ohmic
di†usion layer If the angle / of Ðeld devi-j

M
~1 B g/Vrec,local.ation does not depend on the scale, the local reconnection

velocity would be and would not depend on resis-DVA /
tivity. We claim in ° 3 that / does depend on scale. There-
fore, the local reconnection rate is given by theVrec,localusual Sweet-Parker formulae but with instead of i.e.,j

A
L

x
,

It is obvious from Figure 2a thatVrec,local B VA(VA j
A
/g)~1@2.

magnetic Ðeld lines will undergo reconnectionDL
x
/j

Asimultaneously (compared with a one-by-one line reconnec-
tion process for the Sweet-Parker scheme). Therefore, the
overall reconnection rate may be as large as Vrec,global Bwhich means that the reconnectionVA(L

x
/j

A
)(VA j

A
/g)~1@2,

efficiency critically depends on the value of Morej
A
.

realistically, we will Ðnd that there are other global con-
straints that end up determining the actual global reconnec-
tion speed.

The relevant values of and Sy2T1@2 depend criticallyj
Aon the magnetic Ðeld statistics. Therefore, in the next

section we will brieÑy explore the expected properties of
magnetic turbulence.
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3.1. Theoretical Explanation
ref ) Eyink, Lazarian, Vishniac, (2011), 	
        ApJ, 743, 51.

initial 
location

The Astrophysical Journal, 743:51 (28pp), 2011 December 10 Eyink, Lazarian, & Vishniac

Figure 3. Lagrangian trajectories that start in the ball of radius ρ around space
point x at time t move backward in time to t0, explosively separating to a field-
perpendicular distance ∆x⊥ ∼ (ε|t − t0|3)1/2 which is independent of ρ for
|t − t0| ≫ (ρ2/ε)1/3.

above Equation (48) is realistic at leading order for collisionless,
magnetized plasmas at scales larger than the ion gyroradius ρi

(Kulsrud 1983), while the smoothness scale ℓd set by field-
perpendicular viscosity and resistivity is often of the same order
or smaller than ρi . Thus, our assumptions are quite realistic.
Because of the cutoff ℓd , flux-freezing in the standard sense
must, in fact, be valid. How then can we claim that it becomes
stochastic? To see this, consider the magnetic field observed at
some finite space resolution ρ:

Bρ(x, t) =
∫

d3r Gρ(r)B(x + r, t), (49)

where we have introduced a coarse-graining kernel Gρ to
represent the smearing effect of the observation over a ball
of radius ρ around the space point x. We shall assume below
that ℓd ≪ ρ ≪ Li , the scale of the largest turbulent eddies.
Thus, ρ ! ρi satisfies these conditions. Applying the standard
Lundquist formula for the frozen-in magnetic field, one obtains

Bρ(x, t) =
∫

B(a, t0)·∇axt,t0 (a)
det(∇axt,t0 (a))

∣∣∣∣
xt,t0 (a)=x+r

Gρ(r). d3r. (50)

The Lagrangian particle trajectories that appear in this formula
start in the ball of radius ρ around x at time t and then follow
the flow velocity u backward in time to t0, as illustrated in
Figure 3. When ρ lies in a GS95 turbulent inertial range,
then the trajectories explosively separate to a perpendicular
distance ∆x⊥ ∼ (ε|t − t0|3)1/2, independent of ρ at times
|t − t0| ≫ (ρ2/ε)1/3.

The result is indistinguishable from the stochastic Lundquist
formula (35) which was derived in Section 4.1 using the
stochastic representation of Laplacian resistivity. In fact, in a
formal mathematical limit taking first ℓd → 0, then ρ → 0,
the Lagrangian trajectories in Equation (50) remain stochastic
and the two formulae coincide. This is a rigorous theorem for
the Kazantsev–Kraichnan dynamo model, where it has been
proved that the ensemble of stochastic Lagrangian trajectories
as constructed above is precisely the same as that obtained for
the λ → 0 limit (E & vanden Eijnden 2000). Stochasticity
of flux-freezing in not due intrinsically to resistivity or other
microscopic plasma mechanisms that “break” field lines but
is, instead, a fundamental consequence of turbulent Richardson
diffusion.

Higher-order terms in the generalized Ohm’s law
Equation (47) that do not appear in the ideal Equation (48) will
lead to melding and merging of field lines at scales < ρi . How-
ever, the above argument strongly suggests that these details
of the microscopic plasma processes do not affect the dynam-
ics at scales larger than ρi . In some cases this can be shown
more analytically by defining a suitable “motion” of field lines
consistent with the induction equation. For example, the formu-
lation in Section 4.1 based on addition of a Brownian motion to
the Lagrangian particle dynamics, Equation (31), can be carried
over to certain instances of the generalized Ohm’s law (see in
particular Eyink 2009 for the HMHD equations). This approach
is used in Appendix B to argue that neither the Hall effect
nor Ohmic resistivity will have any significant influence on the
inertial-range turbulence dynamics at large enough scales. The
Hall term, for example, does not affect the dynamics at scales
much greater than δi = ρi/

√
βi , the ion skin depth. Unfortu-

nately, it is difficult to extend this type of argument to all cases
of the generalized Ohm’s law because it is not known how to
define a “motion” of field lines consistent with the induction
equation for the general case.

On the other hand, there is a different argument which applies
in general and leads to the same conclusion that flux-freezing
must be intrinsically stochastic in turbulent plasmas. While the
“motion” of magnetic field lines is a conventional and somewhat
arbitrary concept, the motion of plasma is perfectly well defined
within the validity of an MHD description. Plasma fluid moves
with the bulk velocity u. Thus, field lines may be tracked
by “tagging” the lines with plasma fluid elements and then
following these as Lagrangian fluid particles (Newcomb 1958;
Axford 1984). In the case of a smooth, laminar solution of the
ideal MHD equations, this is unambiguous because of Alfvén’s
theorem: two plasma particles which start on a certain field line
must share a field line for all times. One can then, by convention,
consider this as the “same” field line as the initial one. This
approach fails for a non-ideal Ohm’s law,

E +
1
c

u×B = R, (51)

where R represents all of the terms on the RHS of Equation (47)
other than the motional term. Clearly, R is just the electric field
in the rest frame of the plasma flowing with the bulk velocity
u. EMF due to these non-ideal terms leads to time-dependent
magnetic flux in the rest frame, corresponding to a slippage of
field lines. This vitiates the usual method to assign an identity
to individual field lines over time, because plasma elements
shift their attachments to lines. Charged particles move along
magnetic field lines, but two plasma elements that start on one
field line will sit on distinct field lines at later times.

Now consider a turbulent plasma where the non-ideal term
is numerically “small” but the plasma has a turbulent inertial
range in which the velocity field u is rough, with a power-
law energy spectrum extending down to a smallest length scale
ρ0 ≈ ρi . The slight shifts in line-attachments are enormously
amplified by explosive relative advection, as illustrated in
Figure 4. Consider a single magnetic field line in this plasma
and, along it, two plasma fluid particles at initial locations
a and a′. Due to a combination of the non-ideal field R
and advection by sub-inertial-range eddies, the two plasma
particles will end up on distinct field lines displaced a distance
|x(a′, t) − x(a, t)| = ρ0 apart in a time τ0 which is generally
microscopically small compared with the eddy turnover time
tL. Because of Equation (44), the two plasma elements will
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Richardson Two 
Particle Diffusion:D⊥
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3.4.  Turbulence-Strength Dependence
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3.5. Compressible Effect

The Astrophysical Journal, 743:51 (28pp), 2011 December 10 Eyink, Lazarian, & Vishniac

Figure 3. Lagrangian trajectories that start in the ball of radius ρ around space
point x at time t move backward in time to t0, explosively separating to a field-
perpendicular distance ∆x⊥ ∼ (ε|t − t0|3)1/2 which is independent of ρ for
|t − t0| ≫ (ρ2/ε)1/3.

above Equation (48) is realistic at leading order for collisionless,
magnetized plasmas at scales larger than the ion gyroradius ρi

(Kulsrud 1983), while the smoothness scale ℓd set by field-
perpendicular viscosity and resistivity is often of the same order
or smaller than ρi . Thus, our assumptions are quite realistic.
Because of the cutoff ℓd , flux-freezing in the standard sense
must, in fact, be valid. How then can we claim that it becomes
stochastic? To see this, consider the magnetic field observed at
some finite space resolution ρ:

Bρ(x, t) =
∫

d3r Gρ(r)B(x + r, t), (49)

where we have introduced a coarse-graining kernel Gρ to
represent the smearing effect of the observation over a ball
of radius ρ around the space point x. We shall assume below
that ℓd ≪ ρ ≪ Li , the scale of the largest turbulent eddies.
Thus, ρ ! ρi satisfies these conditions. Applying the standard
Lundquist formula for the frozen-in magnetic field, one obtains

Bρ(x, t) =
∫

B(a, t0)·∇axt,t0 (a)
det(∇axt,t0 (a))

∣∣∣∣
xt,t0 (a)=x+r

Gρ(r). d3r. (50)

The Lagrangian particle trajectories that appear in this formula
start in the ball of radius ρ around x at time t and then follow
the flow velocity u backward in time to t0, as illustrated in
Figure 3. When ρ lies in a GS95 turbulent inertial range,
then the trajectories explosively separate to a perpendicular
distance ∆x⊥ ∼ (ε|t − t0|3)1/2, independent of ρ at times
|t − t0| ≫ (ρ2/ε)1/3.

The result is indistinguishable from the stochastic Lundquist
formula (35) which was derived in Section 4.1 using the
stochastic representation of Laplacian resistivity. In fact, in a
formal mathematical limit taking first ℓd → 0, then ρ → 0,
the Lagrangian trajectories in Equation (50) remain stochastic
and the two formulae coincide. This is a rigorous theorem for
the Kazantsev–Kraichnan dynamo model, where it has been
proved that the ensemble of stochastic Lagrangian trajectories
as constructed above is precisely the same as that obtained for
the λ → 0 limit (E & vanden Eijnden 2000). Stochasticity
of flux-freezing in not due intrinsically to resistivity or other
microscopic plasma mechanisms that “break” field lines but
is, instead, a fundamental consequence of turbulent Richardson
diffusion.

Higher-order terms in the generalized Ohm’s law
Equation (47) that do not appear in the ideal Equation (48) will
lead to melding and merging of field lines at scales < ρi . How-
ever, the above argument strongly suggests that these details
of the microscopic plasma processes do not affect the dynam-
ics at scales larger than ρi . In some cases this can be shown
more analytically by defining a suitable “motion” of field lines
consistent with the induction equation. For example, the formu-
lation in Section 4.1 based on addition of a Brownian motion to
the Lagrangian particle dynamics, Equation (31), can be carried
over to certain instances of the generalized Ohm’s law (see in
particular Eyink 2009 for the HMHD equations). This approach
is used in Appendix B to argue that neither the Hall effect
nor Ohmic resistivity will have any significant influence on the
inertial-range turbulence dynamics at large enough scales. The
Hall term, for example, does not affect the dynamics at scales
much greater than δi = ρi/

√
βi , the ion skin depth. Unfortu-

nately, it is difficult to extend this type of argument to all cases
of the generalized Ohm’s law because it is not known how to
define a “motion” of field lines consistent with the induction
equation for the general case.

On the other hand, there is a different argument which applies
in general and leads to the same conclusion that flux-freezing
must be intrinsically stochastic in turbulent plasmas. While the
“motion” of magnetic field lines is a conventional and somewhat
arbitrary concept, the motion of plasma is perfectly well defined
within the validity of an MHD description. Plasma fluid moves
with the bulk velocity u. Thus, field lines may be tracked
by “tagging” the lines with plasma fluid elements and then
following these as Lagrangian fluid particles (Newcomb 1958;
Axford 1984). In the case of a smooth, laminar solution of the
ideal MHD equations, this is unambiguous because of Alfvén’s
theorem: two plasma particles which start on a certain field line
must share a field line for all times. One can then, by convention,
consider this as the “same” field line as the initial one. This
approach fails for a non-ideal Ohm’s law,

E +
1
c

u×B = R, (51)

where R represents all of the terms on the RHS of Equation (47)
other than the motional term. Clearly, R is just the electric field
in the rest frame of the plasma flowing with the bulk velocity
u. EMF due to these non-ideal terms leads to time-dependent
magnetic flux in the rest frame, corresponding to a slippage of
field lines. This vitiates the usual method to assign an identity
to individual field lines over time, because plasma elements
shift their attachments to lines. Charged particles move along
magnetic field lines, but two plasma elements that start on one
field line will sit on distinct field lines at later times.

Now consider a turbulent plasma where the non-ideal term
is numerically “small” but the plasma has a turbulent inertial
range in which the velocity field u is rough, with a power-
law energy spectrum extending down to a smallest length scale
ρ0 ≈ ρi . The slight shifts in line-attachments are enormously
amplified by explosive relative advection, as illustrated in
Figure 4. Consider a single magnetic field line in this plasma
and, along it, two plasma fluid particles at initial locations
a and a′. Due to a combination of the non-ideal field R
and advection by sub-inertial-range eddies, the two plasma
particles will end up on distinct field lines displaced a distance
|x(a′, t) − x(a, t)| = ρ0 apart in a time τ0 which is generally
microscopically small compared with the eddy turnover time
tL. Because of Equation (44), the two plasma elements will
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3.7. Compressible Effects
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Relativistic Ideal Fluid

Basic equations of relativistic hydrodynamics (RHD):

:Mass Conservation

: Equation of Motion

: Equation of Energy

: spatial projection tensor

:3+1 decomposition



3.6. Compressible Effect: 2
ref ) Banerjee & Galtier, PRE 87, 013019, (2013). 
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Energy cascade law in MHD turbulence: 

This can be larger than LV99	
if S>0

Turbulent Sheet width:

EXACT RELATION WITH TWO-POINT CORRELATION . . . PHYSICAL REVIEW E 87, 013019 (2013)

It is nothing but the exact relation which was derived in [9].
The only difference between the relation obtained above and
that in the published paper is that here the pressure terms are
written as the source terms whereas previously those were
considered to contribute in flux terms.

3. High and low β plasmas

Without a problem we admit that in the limit where the β
parameter of the plasma tends to infinity (very large value),
i.e., the plasma becomes almost incompressible (although
not entirely), the flux term "2/β becomes negligible with
respect to "1 of Eq. (20). On the contrary for a very small
β value, where the plasma can be assumed to be cold
and magnetized (kinetic pressure negligible with respect to
magnetic pressure), the term "2/β dominates over "1 term
and at that situation the effective flux term becomes (after

rearrangement)

−1
4

〈
1
β ′ ∇

′ · (ρve′) + 1
β

∇ · (ρ ′v′e)
〉
. (23)

B. Presence of an external magnetic field

Relation (19) comprises the total magnetic field at each
point of the flow field. This total field b at each point can
be supposed (a realistic case) to have a fluctuating part (vary
in space and time) b̃ superimposed on a constant external
magnetic field B0. In the following, we shall investigate the
flux and the source terms under the said situation.

1. Flux contribution

The part of the total flux term which contains B0 can be
expressed as (with µ0 = 1)

〈
"B0

〉
= ∇r

2
·
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√
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2ρ2
ρ ′v′ · ∇ρ + B0 · b̃′

ρ2
ρ ′v′ · ∇ρ

〉
, (24)

where ṽA = b̃/
√

ρ. Now we assume the external field B0 to
be very strong so that B0 ≫ |b̃| (and also B0 ≫ |δv|). This
situation is classical in astrophysics: for example, there are
many evidences of magnetic loops in the turbulent solar corona
which are interpreted as strong uniform magnetic fields on
which small magnetic and velocity fluctuations are present
[29,30]. We shall just consider the terms weighted by B2

0 . After
some straightforward calculations, we obtain the resultant flux
term (the magnetic terms without B0 and with single power of
B0 are neglected) which writes at main order

〈
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〉
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〉
. (25)

The above expression gives the modifying part of the flux
in the presence of a strong constant magnetic field applied
externally. One can easily understand that the modification
is purely due to compressibility. [Note that the pure kinetic
terms, not shown in Eq. (25), give also a contribution to the
total flux.] It is also interesting to notice that in expression (25)
the fluctuations are exclusively kinetic in nature (because of
the absence of, e.g., a Hall-type term in the basic equations).
One can easily verify that the δv of the first term and the δ(ρv)
of the second term of the above expression can be replaced by
δv⊥ and δ(ρv∥), respectively, where δv⊥⊥B0 and δv∥∥B0. The
pure kinetic terms can, however, be omitted by assuming the
external magnetic contribution to be dominant with respect to

the velocity and the density fluctuations and then expression
(25) will represent the total flux contribution.

2. Source contribution

The source terms are also modified due to the effect of a
strong external magnetic field. At main order (keeping only
the terms in B2

0 ), the terms of type ⟨(∇ · v)S1⟩ get reduced to

⟨%v⟩ = B2
0

2
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〉
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and the source terms like ⟨(∇ · vA)S2⟩ write
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]〉
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(27)

We note that the latter expression implies only parallel
components of the velocity.

3. Reduced anisotropic law

Further simplifications are possible if we assume that the
velocity field vector at each point of the flow field is (at the main
order) perpendicular to the external magnetic field, i.e., if v∥ =
v′

∥ = 0, and therefore v ≡ v⊥. In that case, ⟨%vA⟩ vanishes and
so does the second term of ⟨"Bz⟩; then the corresponding
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It is nothing but the exact relation which was derived in [9].
The only difference between the relation obtained above and
that in the published paper is that here the pressure terms are
written as the source terms whereas previously those were
considered to contribute in flux terms.

3. High and low β plasmas
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parameter of the plasma tends to infinity (very large value),
i.e., the plasma becomes almost incompressible (although
not entirely), the flux term "2/β becomes negligible with
respect to "1 of Eq. (20). On the contrary for a very small
β value, where the plasma can be assumed to be cold
and magnetized (kinetic pressure negligible with respect to
magnetic pressure), the term "2/β dominates over "1 term
and at that situation the effective flux term becomes (after
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in space and time) b̃ superimposed on a constant external
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where ṽA = b̃/
√

ρ. Now we assume the external field B0 to
be very strong so that B0 ≫ |b̃| (and also B0 ≫ |δv|). This
situation is classical in astrophysics: for example, there are
many evidences of magnetic loops in the turbulent solar corona
which are interpreted as strong uniform magnetic fields on
which small magnetic and velocity fluctuations are present
[29,30]. We shall just consider the terms weighted by B2

0 . After
some straightforward calculations, we obtain the resultant flux
term (the magnetic terms without B0 and with single power of
B0 are neglected) which writes at main order
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The above expression gives the modifying part of the flux
in the presence of a strong constant magnetic field applied
externally. One can easily understand that the modification
is purely due to compressibility. [Note that the pure kinetic
terms, not shown in Eq. (25), give also a contribution to the
total flux.] It is also interesting to notice that in expression (25)
the fluctuations are exclusively kinetic in nature (because of
the absence of, e.g., a Hall-type term in the basic equations).
One can easily verify that the δv of the first term and the δ(ρv)
of the second term of the above expression can be replaced by
δv⊥ and δ(ρv∥), respectively, where δv⊥⊥B0 and δv∥∥B0. The
pure kinetic terms can, however, be omitted by assuming the
external magnetic contribution to be dominant with respect to

the velocity and the density fluctuations and then expression
(25) will represent the total flux contribution.

2. Source contribution

The source terms are also modified due to the effect of a
strong external magnetic field. At main order (keeping only
the terms in B2

0 ), the terms of type ⟨(∇ · v)S1⟩ get reduced to
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We note that the latter expression implies only parallel
components of the velocity.

3. Reduced anisotropic law

Further simplifications are possible if we assume that the
velocity field vector at each point of the flow field is (at the main
order) perpendicular to the external magnetic field, i.e., if v∥ =
v′

∥ = 0, and therefore v ≡ v⊥. In that case, ⟨%vA⟩ vanishes and
so does the second term of ⟨"Bz⟩; then the corresponding
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3.6.  Alfven to Fast Mode Convergion

compression mode increases with σ-parameter

ref) MT & Lazarian (2016), ApJL, 831, 11. 

fast mode power linearly increases with Alfven component
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FIG. 1. Left: The ratio of fast to Alfvén mode velocity power in terms of the non-relativistic fast

Mach number of the Alfvén mode component using 3-velocity. This indicates that the compressible

mode becomes more important with increasing �-parameter. Right: The ratio of fast to Alfvén

mode velocity power in terms of the background � parameter at t = 2t
eddy

and �v
A

/c
f,? = 0.16

whose values are obtained by fitting of the curves of each �-value by linear curves. Note that the

error bar results from the fitting of the curves. This shows that the ratio is proportional with
p
1 + � when � > 1.

background magnetic field. The curves in the panel show that the fast mode power increases

nearly linearly with the fast Mach number as reported in the non-relativistic case [8, 9]. In

addition, it also shows that the fast component increases with �-value. The right panel of

Figure 1 is the ratio of fast to Alfvén mode velocity power in terms of the background �

value at t = 2t
eddy

and �v
A

/c
f,? = 0.16. It shows the ratio is nearly independent of the

�-parameter when � < 1 whose value is around 0.08. Note that this indicates the Alfvén to

fast energy conversion is not more than 8% in the low-� plasma, which is consistent with

the result obtained by [8]. On the other hand, it increases approximately by (1+�)1/2 when

� > 1, which is basically consistent with our previous result of the driven turbulence [19].

This indicates that the ratio can be written as:

(�V )2
f

/(�V )2
A

/ (�V )
A

/c
fast,? (when � ⌧ 1), (3)

/ (1 + �)1/2(�V )
A

/c
fast,? (when � & 1). (4)

Note that this is a relativistic extension of the Equation (6) in [8]. This indicates that

the non-linearity of the Alfvén mode becomes strong enough to convert its energy into

compressible mode at this value of fast Mach number as the electromagnetic field becomes

4
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Fig. 3.— �-dependence of fast to Alfvén mode power ratio.
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ratio (Figure 1); we use higher resolutions, Δ=L/1024, L/
2048, to obtain the energy spectra and the structure functions
provided in Figure 2 (L/1024 for σ=0.2, 1 and L/2048 for
σ=3). The resolution is chosen as sufficient for resolving
turbulent eddies responsible for the energy exchange between
modes in our simulation.4

3. MODE DECOMPOSITION OF RMHD TURBULENCE

Following Cho & Lazarian (2002, 2003), we consider the
displacement vectors of slow and fast modes. Since there is no
average velocity in the background flow, the displacement
vectors reduce to

ˆ ˆ ˆ ( )ǁ ǁ
ǁ

ǁY r � �
?

? ?

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥k kk

u

c

k
k

k
k

k1 , 1slow
slow
2

s
2

2 2

Figure 1. Left: the ratio of fast to Alfvén mode velocity power in terms of the non-relativistic fast Mach number of the Alfvén mode component using three-velocity.
This indicates that the compressible mode becomes more important with increasing σ-parameter. Right: the ratio of fast to Alfvén mode velocity power in terms of the
background σ parameter at t=2teddy and E �?v c 0.16A f, whose values are obtained by fitting of the curves of each σ-value by linear curves. Note that the error bar
results from the fitting of the curves. This shows that the ratio is proportional with T�1 when σ>1.

Figure 2. Top: the kinetic energy spectra of Alfvén, fast, and slow modes. Bottom: the eddy scale of Alfvén, fast, and slow modes obtained by a second-order velocity
structure function. All of the data are measured at one eddy turnover time. The initial Alfvén mode turbulence is injected at k/2π=3/L with velocity dispersion δv/
cA=0.6 for σ=0.2, 1 and δv/cA=0.5 for σ=3.

4
“Ideal” RMHD means that no explicit dissipation processes are included,

such as the viscosity, thermal conductivity, and resistivity. However, the
explicit differential scheme we employ here always includes the numerical
grid-scale dissipation, which allows the dissipation at the smallest eddy and the
direct cascade of energy into smaller scale.

2
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Initial condition:	
   •Harris current sheet	
   •cold upstream flow 	
        (T ~ 0.1mc2)	
   •hot current sheet	
        (Tsheet ~ mc2)	
   • Box size: 	
   • mesh size: 160L×20L×40L  
  Δx, Δy, Δz, ~0.04L, 0.02L, 0.02L	
   • uniform resistivity	
   • Large Lundquist number: 	
              SL ~ 105	

   • Poynting dominated : 	
              σ = 5

σ ≡ [E × Bc/4π]
ρhc2γ2v

(1)

1

2 L

160 L

cold background

B0

-B0

hot current sheet

3.8. initial condition for self-generated turbulence



2. Poynting Dominated Plasma of Astrophysical Phenomena

43

Central 
Engine

Outflow from 	
highly magnetized central engine 	

or magnetic field driven one

Some efficient energy 
conversion

?
Matter Energy 	
Dominated Plasma

radiation

Poynting Energy 	
Dominated Plasma


