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I. Turbulent transport



Equation of fluctuating velocity

turbulence–mean velocity 
interaction

turbulence–turbulence 
interaction

Linear in     and      , each (Fourier) mode evolves independently

Homogeneous turbulence, no dependence on large-scale 
inhomogeneity

Instability or wave approach

Closure approach



Nonlinear terms appear under the divergence operator

Integrated over  
the volume of the system

No net contribution 
only transfer

Fourier representations

Nonlinear term
The dynamics of k mode is governed by its interaction with all other 
modes



Required grid points
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νT: eddy viscosity (turbulent viscosity)

•enhancing transport
•spatial and temporal 

dependence

Reynolds stress

Enhancement of transport

(Model)

(Boussinesq, 1877)

Turbulent Laminar



Transport coefficients
An example: Turbulent eddy viscosity

- Parameters

- Mixing length

- Transport equations

- Turbulence energy

- Propagators
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Turbulent swirling pipe flow Uz
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Uθ
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Suppression of transport

Experimental studies (Kitoh, 1991; Steenbergen, 1995)
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axial 
velocity

Large-scale structure again! Additional symmetry breakage

circumferential 
velocity

upstream downstream



II. Turbulence modelling 
based on statistical theory



Vortex generation
Vorticity

cf., Biermann battery

cf., Mean magnetic field 

Mean vorticity

Reynolds stress

electromotive force

vortexmotive force



differential rotation, “Ω effect”

Mean field

Turbulence
B

U

∇U

Inhomogeneous HomogeneousHomogeneous

“Ansatz”

Modelling in dynamos
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Theoretical formulation
Yoshizawa, 1984: mirror-symmetric case
Yokoi & Yoshizawa, 1993: non-mirror-symmetric case

DIA

Multiple-scale analysis

A closure theory (propagator renormalization)
for homogeneous isotropic turbulence

Fast and slowly varying fields

⎧
⎨
⎩

• Introduction of two scales
• Fourier transform of the fast variables
• Scale-parameter expansion
• Introduction of the Green’s function 
• Statistical assumptions on the basic fields 
• Calculation of the statistical quantities using the DIA



(i) Introduction of two scales

Velocity-fluctuation equation

Fast and slow variables

where

Slow variables X and T change only when x and t change much.



(iii) Scale-parameter expansion

Eliminating the pressure term, we have

(iv) Introduction of the Green’s function 

(ii) Fourier transform of the fast variables
The fluctuation fields are homogeneous with respect to the fast 
variables:



1st-order field

Green’s function



Formal solution in terms of 



where

Basic field: homogeneous isotropic but non-mirror-symmetric

Eddy viscosity

Helicity-related  
coefficient

helicity inhomogeneity is essential

mixing length

(v) Statistical assumptions on the basic field

(vi) Calculation of the statistical quantities by DIA
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III. Global flow generation



DNS set-up

Set-up of the turbulence and rotation ωF (left), the schematic spatial profile of the 
turbulent helicity H (=〈uʹ・ωʹ〉) (center) and its derivative dH/dz (right).
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We consider three values for the scale separation ratio,
kf/k1 = 5, 15, and 30 and determine ⌘/⌫T using Eq. (41)
by measuring Uy and H. We express time in terms of

⌧ = 1/urmskf , (42)

which is also used as an estimate of the correlation time
of the turbulence. Kinetic energy spectra, EK(k, t), are
normalized such that

R
EK(k, t) dk = hu2

i/2.
All simulations are performed with thePencil Code

1,
which uses a high-order finite di↵erence method for solv-
ing the compressible hydrodynamic equations. We use a
small Mach number so that the results are essentially the
same as for a purely incompressible flow.

B. Numerical results

The results are summarized in Table I. All simulations
show that the sign of ⌘ is positive. We find that ⌘/⌫T⌧2

is in the range of O(10�2) to O(10�1), depending on
Reynolds and Coriolis numbers (Co = !F⌧) as well as
scale separation. Run A shows clear generation of a mean
flow as seen from Eq. (41). This equation is also used to
determine ⌘/(⌫T⌧2) as the correlation coe�cient in Uy

vs. 2!y
FH; see the last column of Table I.

1. Mean flows

As we see from Eq. (41), the large-scale flow is expected
to be generated in the direction of the rotation vector !F

(or the large-scale vorticity ⌦) mediated by the helicity
e↵ect. The shape of the mean axial velocity component
Uy is shown in Fig. 3. A clear flow pattern with positive
and negative velocity is seen, which corresponds to the
velocity distribution given by Eq. (41).
In Fig. 4, we show the temporal evolution of the tur-

bulent helicity hu

0
·!0

i and the mean-flow helicity U ·!F.
In this simulation, the turbulent helicity hu

0
· !0

i is sus-
tained by the external forcing from the beginning of the

TABLE I: Summary of DNS results.

Run kf/k1 Re Co ⌘/(⌫T⌧
2)

A 15 60 0.74 0.22
B1 5 150 2.6 0.27
B2 5 460 1.7 0.27
B3 5 980 1.6 0.51
C1 30 18 0.63 0.50
C2 30 80 0.55 0.03
C3 30 100 0.46 0.08

1 http://github.com/pencil-code/

FIG. 3: Axial flow component Uy on the periphery of the
domain for Run B2 with kf/k1 = 5 and Re = 460.

simulation. Its spatial distribution reflects the forcing,
which is proportional to sin k1z so that H > 0 for z > 0
and H < 0 for z < 0. On the other hand, the mean-flow
helicity U ·!F is generated as the mean axial flow Uy is
induced by the inhomogeneous turbulent helicity e↵ect.
The magnitude of U · !F reaches an equilibrium value
around t/⌧ = 2000. Its spatial distribution is consistent
with the direction of the induced axial flow Uy.

FIG. 4: Turbulent helicity hu0 ·!0i (top) and mean-flow helic-
ity U ·!F (bottom) for Run C1 with kf/k1 = 30 and Re = 18.

2. Reynolds stress tensor

The y-z component of the Reynolds stress, hu0yu0z
i in

the early stage of development (averaged over time from
t/⌧ = 40 to 200), is shown in the top panel of Fig. 5.
The averaged magnitude of the Reynolds stress is drawn
with the dot dashed line, which suggests the peak magni-
tude normalized by the turbulent intensity hu02

i is about

Rotation

Inhomogeneous 
turbulent helicity

Summary of DNS results
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Axial flow component Uy on 
the periphery of the domain

Turbulent helicity 〈uʹ・ωʹ〉 (top) and 
mean-flow helicity U・2ωF (bottom)

Global flow generation



Reynolds stress 〈uʹyuʹz〉 (top), 
helicity-effect term (∇H)z 2ωFy (middle), 
and their correlation (bottom).

Mean axial velocity Uy (top), turbulent 
helicity multiplied by rotation 2ωFH 
(middle), and their correlation (bottom).

Early stage Developed stage

Reynolds stress



Run A

Run B2

Spectra



Ω*

u′
δωω′+

δωω′−

δu′ = τu′×Ω*

δU+ = τ 〈δu′ × δω′+〉δU− = τ 〈δu′ × δω′−〉

δΩ = ∇×δU

δH+

δH−

Physical origin

VM ⌘ hu0 ⇥ !0i

Rij ⌘ hu0iu0jiReynolds stress

Vortexmotive force



Reynolds stress evolution
Local helical forcing

(Inagaki, Yokoi & Hamba, submitted to Phys. Rev. Fluids)



Reynolds-stress budget
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IV. Stellar convection zone



Angular momentum around the rotation axis

Vector flux of angular momentum

Helicity effect

Miesch (2005) Liv. Rev. Sol. Phys. 2005-1

Angular-momentum transport  
in the solar convection zone



Duarte, et al, (2016) MNRAS 456, 1708

Helicity effect in the stellar convection zone

r/R
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Schematic helicity distribution

r2H > 0
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V. Summary



Summary
In turbulent momentum transport in hydrodynamics

Mean velocity strain (symmetric part of velocity shear) 
+ Energy

Mean absolute vorticity (antisymmetric part of velocity shear) 
+ (Inhomogeneous) Helicity

Transport enhancement (structure destruction)

Transport suppression (structure formation)

N. Yokoi, Geophys. Astrophys. Fluid Dyn. 107, 114 (2013)
N. Yokoi & A. Brandenburg, Phys. Rev. E 34, 033125 (2016)

N. Yokoi & A. Yoshizawa, Phys. Fluids A 5, 464 (1993)



Magnetohydrodynamic Case

𝛼 dynamo

Cross-helicity dynamo 𝛼 and cross-helicity dynamo

Only transport enhancement  
or structure destruction

Energy Cross helicity Helicity

Widmer, Büchner & Yokoi Phys. Plasmas, 23, 092304 (2016)

Guide field

: Mean velocity strain

: Mean magnetic strain
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