

Takayoshi Sano (ILE, Osaka U, Japan)

【MHD2017】 磁気流体プラズマで探る高エネルギー天体現象研究会 August 28, 2017 (東京)

Since I moved to Osaka, ...

- MHD Simulation + Laser Experiment
- Keywords: Plasma Physics, Magnetic Field
- Target: Boundary between Laboratory (Laser) Plasma and Astrophysical Plasma
 - MHD Turbulence (MRI, Dynamo)
 - High-Pressure Physics (HEOS) Jupiter, ICF
 - Interfacial Instability (RMI, RTI) ISM, ICF
 - Particle Acceleration (PIC) LPI + B

To understand the saturation of MRI is an ultimate goal of accretion disk study.

- What is the origin of "alpha"?
 - Local Shearing Box
 - Non-ideal MHD Effects (Ohmic & Hall)
 - Pressure Dependence?
- What determines the saturation?
 - Magnetic Field Geometry
 - Dissipation
 - Magnetic Prandtl Number
 - Global Effect (Wind)
 - Convection?

MRI turbulence is the most promising mechanism of angular momentum transport.

- Origin of Turbulence in Accretion Disks
- Key Ingredients
 - (Weak) Seed Field
 - Differential Rotation

- Field Amplification (Dynamo)
- Different Rotation in the Sun → Unstable?

Convection zone in the Sun could be unstable for MRI.

- Higher Latitude Tachocline
- Near Surface Shear Layer (NSSL)

Linear stability for MRI is examined with a radial shear in the vertical velocity.

Unperturbed State

- Uniform Density & Pressure
- Differential Rotation & Vertical Shear Flow $v_0 = (0, -q\Omega x, v_{z0}(x))$ Λ^{Ω}
- Sinusoidal Shear

$$v_{z0} = v_0 \cos(k_0 x)$$

Uniform Vertical Magnetic Field

 $\boldsymbol{B}_0 = (0, 0, B_0)$ Two Major Parameters of This Analysis

$$K_0 = \frac{v_{A0}k_z}{\Omega} \quad \& \quad V_0 = \frac{v_0}{v_{A0}}$$

The growth rate is given by complex eigenvalues of 2nd order dispersion equations.

$$D\left(\frac{\delta P}{\rho_0} + v_{A0}^2 \frac{\delta B_z}{B_0}\right) = \frac{\left(\sigma^2 - v_{A0}^2 k_z^2\right)^2 - \kappa^2 \left(\sigma^2 - v_{A0}^2 k_z^2\right) - 4\Omega^2 v_{A0}^2 k_z^2}{\sigma \left(\sigma^2 - v_{A0}^2 k_z^2\right)} \left(i\delta v_x\right)$$

$$D(i\delta v_x) = -(Dv_{z0})\frac{k_z}{\sigma}(i\delta v_x) + \frac{\sigma k_z^2}{\sigma^2 - v_{A0}^2 k_z^2} \left(\frac{\delta P}{\rho_0} + v_{A0}^2 \frac{\delta B_z}{B_0}\right)$$
$$\sigma \equiv \omega - v_{z0}k_z \qquad v_{A0}^2 \equiv \frac{B_0^2}{4\pi\rho_0}$$

Periodic Boundary Condition

 $i\delta v_x = 0$ or $D(i\delta v_x) = 0$ at $k_0 x = \pm \pi$

- Searched in Complex Space

KHI in the shearing box is suppressed by differential rotation.

If the shear velocity exceeds the Alfven speed, the growth of MRI is reduced significantly.

- Reduction of MRI Growth
- Appearance of KHI Mode

Linear growth of MRI is killed or regulated by convection (turbulent) motion.

Conditions:

- Shear wavelength is comparable to v_{A0}/Ω
- Shear velocity is 10 times faster than Alfven speed.

Interfacial Magneto-Hydrodynamic Instabilities in Laser Plasmas

Collaborators

Simulation & Theory

- K. Nishihara (Osaka U)
- C. Matsuoka (Osaka City U)
- T. Inoue (Nagoya U)
- J. G. Wouchuk (UCLM, Spain)

Laser Experiment

- Y. Sakawa, S. Fujioka, K. Shigemori, S. Tamatani, M. Murakami,
 R. Kumar, K. Matsuo (Osaka U)
- T. Morita (Kyushu U)
- M. Koenig, B. Albertazzi, T. Michel, G. Rigon (LULI, France)
- A. Casner (CEA, France)

Laser Experiment

GEKKO XII Laser at ILE, Osaka U Laser Wavelength: 0.35 [um], Laser Energy: 1 [kJ] Pulse Duration: 2.5 [ns], Spot Diameter: 600 [um]

Outline

- Backgrounds
 - Why RMI? Why Magnetic Field?
- MHD RMI
- Effects of Magnetic Field
 - 1. Suppression of RMI (Theory)
 - 2. Field Amplification (Theory/Experiment)
 - 3. Anisotropic Thermal Conduction (Experiment)
- Summary

Backgrounds

RMI-driven turbulence plays an important role in various plasma phenomena.

Astrophysical Plasmas

- Supernova Shocks + Inhomogeneous Interstellar Medium
 - Origin of IS Turbulence
 - Magnetic Field Amplification

Laboratory Plasmas

- Implosion in Laser Fusion Plasma
 - "Mixing" by RMI & RTI
 - External Magnetic Field
- RMI + Magnetic Field = ???

Supernova Remnant

Clark+ 2016

Generation of kilo-Tesla magnetic fields has been achieved by high-power lasers.

- Strong B Field Available in Laser Exp.
- Method (Using GEKKO Laser in Osaka)
 - Coil + Compression
 - Capacitor Coil

cf.) 1kT = 10MG, Permanent Magnet \sim 1T

Korneev + 2015

Laser experiments can treat RMI in highenergy-density plasmas.

"Low Energy Density" RMI

Chapmann & Jacobs 2006

Laser experiments can treat RMI in highenergy-density plasmas.

- "Low Energy Density" RMI
- "High Energy Density" RMI
 - High Mach Number Shock
 - Plasma Flow
 - Magnetic Field 年
- Laser Plasma RMI
 - Ablative RM-type Instability
 - Classical RMI (Heavy-to-Light)

Experimental Result

Chapmann & Jacobs 2006

The key ingredients of RMI is a shock wave and corrugated contact discontinuity.

Driving engine of RMI is the vorticity deposited at the corrugated interface.

• Mechanism: Tangential Flows Caused by Refraction Motion at Oblique Shock Surface

Driving engine of RMI is the vorticity deposited at the corrugated interface.

• Mechanism: Tangential Flows Caused by Refraction Motion at Oblique Shock Surface

Driving engine of RMI is the vorticity deposited at the corrugated interface.

 Mechanism: Tangential Flows Caused by Refraction Motion at Oblique Shock Surface

Ś

Growth Velocity

Wouchuk & Nishihara 1996; 1997

Characteristics of RMI

- Linear Growth with Time
- Without Gravity
- Unstable for Both <u>Light-</u> <u>to-Heavy</u> & <u>Heavy-to-</u> <u>Light</u> Configurations

There are some formula predicting the linear growth velocity of RMI theoretically.

Asymptotic Growth Velocity Wouchuk & Nishihara 1997

There are some formula predicting the linear growth velocity of RMI theoretically.

• Asymptotic Growth Velocity Wouchuk & Nishihara 1997

Important effects of B fields on RMI have shown by simulations and experiments.

- 1.Suppression of RMI Growth by a Strong Magnetic Field
- 2.Amplification of a Magnetic Field by RMI Turbulent Motions

3.Energy Confinement Due to Anisotropic Thermal Conduction

1. Suppression of RMI

MHD Simulations

Samtaney 2003 Wheatley et al. 2005; 2009 Sano+ PRL 2013

Basic equations for numerical RMI simulations[™] are standard ideal MHD equations.

Ideal MHD Equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) &= 0 \\ \frac{\partial \rho \boldsymbol{v}}{\partial t} + \boldsymbol{\nabla} \cdot \left[\left(P + \frac{B^2}{8\pi} \right) \boldsymbol{I} + \rho \boldsymbol{v} \boldsymbol{v} - \frac{\boldsymbol{B} \boldsymbol{B}}{4\pi} \right] &= 0 \\ \frac{\partial e}{\partial t} + \boldsymbol{\nabla} \cdot \left[\left(e + P + \frac{B^2}{8\pi} \right) \boldsymbol{v} - \frac{(\boldsymbol{B} \cdot \boldsymbol{v}) \boldsymbol{B}}{4\pi} \right] &= 0 \\ \frac{\partial \boldsymbol{B}}{\partial t} &= \boldsymbol{\nabla} \times (\boldsymbol{v} \times \boldsymbol{B}) \qquad \qquad e = \frac{P}{\gamma - 1} + \frac{\rho v^2}{2} + \frac{B^2}{8\pi} \end{aligned}$$

- Numerical MHD Scheme
 - Godunov-type Grid-base Scheme with an Approximate MHD Riemann Solver (Sano+ ApJ 1998)
 - CMoC-CT for the Field Evoluton (Clarke 1996)

Initial setup for the single-mode analysis is characterized by only 4 parameters.

- 2D Initial Configuration
- 4 Non-Dimensional Parameters
- 1. Mach Number

 $M = |U_i|/c_{s1}$

2. Density Jump

3. Corrugation Amplitude ψ_0/λ

4. Field Strength $\beta_0 = 8\pi P_0/B_0^2$

SIM

RMI growth can be reduced if a magnetic field is larger than a critical value.

Plasma beta gives the criteria?

RMI growth can be reduced if a magnetic field is larger than a critical value.

0.5

12

10

8

6

4

 ρ/ρ_1

(c)

- Plasma beta gives the criteria?
- No, not so simple...
- Critical strength depends on the Mach number of incident shock.

RMI growth can be reduced if a magnetic field is larger than a critical value.

- Plasma beta gives the criteria^(*)
- No, not so simple...
- Critical strength depends on the Mach number of incident shock.
- Key Process: <u>Extraction</u> of the Vorticity from the <u>Interface</u>

Samtaney 2003 Wheatley et al. 2005; 2009

For HD cases, the vorticity deposited at the I interface stays there and drives RMI.

During the growth of the RMI, vorticity is always associated with the CD.
When B fields exist, the vorticity travels awa_y^{SM} from the interface by Alfven wave.

 Vortex sheet is moving away from the contact surface!
 Sano+ PRL 2013

When B fields exist, the vorticity travels awa_y^{SM} from the interface by Alfven wave.

 Vortex sheet is moving away from the contact surface!
 Sano+ PRL 2013

Critical stability condition is determined by the Alfven (Mach) number for RMI.

SIM

Alfven Number for RMI

$$R_A \equiv rac{v_{
m lin}}{v_A^*}$$
 — WN Formula

Critical stability condition is determined by the Alfven (Mach) number for RMI.

Alfven Number for RMI

$$R_A\equiv rac{v_{
m lin}}{v_A^*}$$
 \leftarrow WN Formula

- Critical Value ~ 10
 - Independent of Mach Number, 0.1
 Density Ratio, Perturbation Amplitude, and Field Direction!

$$(\rho_2/\rho_1, \psi_0/\lambda) = (0.1, 0.1) \& B_y = (0.5, 0.1) \& B_y = (0.1, 0.03) \& B_y = (0.1, 0.1) \& B_x = (10, 0.1) \& B_y$$

Field Suppressed Х $\overline{\mathbf{\cdot}}$ 0 \bigcirc 0.01 \bigcirc **Unstable** 10 100 M

SIM

Stronger

Critical stability condition is determined by the Alfven (Mach) number for RMI.

Alfven Number for RMI

$$R_A\equiv rac{v_{
m lin}}{v_A^*}$$
 and the second seco

- Critical Value ~ 10
 - Independent of Mach Number, 0.1
 Density Ratio, Perturbation Amplitude, and Field Direction!
- Consistent with
 <u>Current-Vortex Sheet</u>
 <u>Model</u> Matsuoka+ JNS 2017

SIM

Critical field strength for the suppression in laser plasma is estimated as about 10T.

- This will be tested experimentally soon.
- For Stability (Laser Exp. Condition) $R_A < 10$ $B > B_c \approx 0.1 \times (4\pi \rho^*)^{1/2} v_{\text{lin}}$

SIM

2-1. Amplification of a Magnetic field

MHD Simulations & Current-Vortex Sheet Model Sano+ ApJ 2012 Matsuoka+ JNS 2017

Ambient magnetic fields can be amplified dramatically by RMI motions.

SIM

Ambient magnetic fields can be amplified dramatically by RMI motions.

SIM

Growth rate of B field agrees fairly well with SM the stretching rate of interface.

• Amplification by Stretching Term in Induction Eq.

Field amplification process is independent of [™] the initial field direction.

• Saturation level is independent of any parameters; Mach number, density jump, & fluctuation amplitude.

Saturation level of field strength is of the order of turbulent kinetic energy.

• The maximum field strength is limited by the growth (turbulent) velocity of RMI.

SIM

Saturation level of field strength is of the order of turbulent kinetic energy.

• The maximum field strength is limited by the growth (turbulent) velocity of RMI.

SIM

Magnetic field amplification occurs also in 3D[™] RMI, and the amplitude is slightly larger.

Initial Modulation Function $\psi_{\rm 3D} = \psi_0 \cos(ky) \cos(kz)$

Magnetic field amplification occurs also in $3D^{SM}$ RMI, and the amplitude is slightly larger.

Complicated "filamentary" field structures are formed in multi-mode fluctuation cases.

Filamentary structures in RMI remind us interstellar turbulence driven by SN shocks.

Supernova Shock + Density Fluctuation in ISM

SIM

 RMI turbulence shows many similarities to Interstellar turbulence.

2-2. Amplification of a Magnetic field

Experimental Results by GEKKO Laser in Osaka

Preliminary

Classical RMI experiment using high-power lasers have been carried out by many groups.

- NOVA Laser
 - Be/Foam, Be/CH
 Dimonte & Remington 1993
 Farley+ 1996
- OMEGA Laser
 - CHBr/FoamGlendinning+ 2003
- Nike Laser
 - Foam/CH e.g., Aglitskiy+ 2006
- X-ray Diagnostics

Glendinning+2003

Classical RMI experiment using high-power lasers have been carried out by many groups.

- NOVA Laser
 - Be/Foam, Be/CH
 Dimonte & Remington 1993
 Farley+ 1996
- OMEGA Laser
 - CHBr/Foam Glendinning+ 2003
- Nike Laser
 - Foam/CH e.g., Aglitskiy+ 2006
- X-ray Diagnostics

- GEKKO Laser at Osaka
 - CH/N2 Gas
 - Inclusion of B Field
 - Optical Measurement

Koenig+ PoP 2017

Laser experiment on self-generated field is $^{\text{EXP}}$ one of the hot topics in "laser astrophysics".

- 1. Generation of B Field
 - Biermann Battery Process
- 2. Field Amplification
 - Amplification of Self-Generated Field by Turbulence Driven by Shock + "Mesh" Top view

 $-\nabla n_e \times \nabla p_e / e n_e^2$

Laser experiment on self-generated field is $^{\text{EXP}}$ one of the hot topics in "laser astrophysics".

- 1. Generation of B Field
 - Biermann Battery Process
- 2. Field Amplification
 - Amplification of Self-Generated Field by Turbulence
 Driven by Shock + "Mesh"

 $-\nabla n_e \times \nabla p_e / e n_e^2$

 Amplification of an External Seed Field by Turbulence Driven by RMI

Why laser experiment? --- It is because of magnetized plasma and high Mach number.

- Initial Interface
 - Modulated CH Foil (50 umt)
 - Wavelength: 150 um
 - Amplitude: 7.5 um
 - Nitrogen Gas
 - Pressure: 5 Torr

Experimental Setup

EXP

2016 FM02

2016 FM02

Why laser experiment? --- It is because of magnetized plasma and high Mach number.

- Initial Interface
 - Modulated CH Foil (50 umt)
 - Wavelength: 150 um
 - Amplitude: 7.5 um
 - Nitrogen Gas
 - Pressure: 5 Torr
- Magnetic Field
 - Neodymium Magnet
 - Strength: 0.2 T

Experimental Setup

EXP

Why laser experiment? --- It is because of magnetized plasma and high Mach number.

- Initial Interface
 - Modulated CH Foil (50 umt)
 - Wavelength: 150 um
 - Amplitude: 7.5 um
 - Nitrogen Gas
 - Pressure: 5 Torr
- Magnetic Field
 - Neodymium Magnet
 - Strength: 0.2 T
- Laser-Driven Shock
 - GEKKO Laser
 - Energy: 0.2-0.7 kJ
 - Pulse: 2.5 ns

• Experimental Setup

EXP

Both of the transmitted shock and interface |EXP| velocities depend on the laser intensity.

Evolution of RMI growth observed successfully by optical measurements.

EXP

 Snapshot Taken by Optical Shadowgraphy

Evolution of RMI growth observed successfully by optical measurements.

EXP

 Snapshot Taken by Optical Shadowgraphy

Evolution of RMI growth observed successfully by optical measurements.

 Snapshot Taken by Optical Shadowgraphy

 Phase reversal at the very beginning was observed in the past GEKKO experiment.

EXP

0.5

Time (ns)

1.0

1.5

-10

0.0

Growth velocity of the surface fluctuation can^{EXP} be evaluated from snapshots of the "fingers".

Measured growth velocities are comparable or larger than the model prediction.

- Wouchuk-Nishihara Formula
 - With a Help of the **Interface Velocity** from an Empirical Fit

$$rac{v_{ ext{lin}}}{k\psi_{0}v_{i}}pprox -0.16 \, {egin{array}{c} rac{
ho_{2}}{
ho_{1}} = 10^{-5}} \ M_{i} = 5 \ \end{array}$$

Measured growth velocities are comparable or larger than the model prediction.

- Wouchuk-Nishihara Formula
 - With a Help of the Interface Velocity from an Empirical Fit

$$v_i \sim 15 \left(\frac{I_L}{10^{13} \text{ W/cm}^2} \right)^{0.56}$$

- Future Work
 - Amplified Field
 Measurement (B-Dot)
 - RMI + RTI (Early Phase)

$$rac{v_{ ext{lin}}}{k\psi_{0}v_{i}}pprox -0.16 \, { rac{
ho_{2}}{
ho_{1}} = 10^{-5}}_{M_{i}\,=\,5}$$

3. Anisotropic Thermal Conduction

GEKKO Experiment in Osaka Matsuo+ PRE 2017

Bottom Line: Anisotropic thermal conduction affects flow dynamics even when the plasma beta is large.

Anisotropic thermal conduction affects flow dynamics even when the plasma beta is large.

- Large Plasma Beta: Lorentz force is negligible.
- But the dynamics can be modified by B field via "confinement of plasma thermal energy".

Non-uniform heat flow is formed on corrugated planar target in strong B field.

- 1. Modulation on Ablation Side of Target
- 2. Non-uniform Field Distribution Generated by Plasma Flow
- 3. Thermal Energy Kept for Longer Timescale at Stronger Field Region
- 4. Enhance the Modulation

Non-uniform heat flow enhances the perturbation growth.

- Radiation Magneto-Hydrodynamic Simulation (PINOCO-MHD)
- GEKKO result is in good agreement with the simulation.

Matsuo+ PRE 2017

B Parallel

0.0

Without **B**

0.5

150

Without B

200

EXP

Summary

- We are investigating the magnetohydrodynamic evolutions of RMI by using both simulations and laser experiments.
- There are 3 interesting features in MHD RMI.
 - 1. A strong magnetic field can reduce the growth of RMI significantly, where the Alfven (Mach) number is the key controlling parameter. Sano+ PRL 2013; Matsuoka+ JNS 2017
 - Turbulent motions driven by RMI can amplify an ambient magnetic field by many orders of magnitude.
 Sano+ ApJ 2012
 - 3. Anisotropic thermal conduction can affect hydrodynamic flows even when the plasma beta is much larger than unity. Matsuo+ PRE 2017