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1.	太陽型星の磁気活動のロスビー数依存性
～	なぜロスビー数に注目するのか？	～



mechanism that does not rely on a shear layer. Existing dynamo simulations for fully convective stars 
succeed in generating magnetic fields, but are unable to predict their behaviour as a function of the rotation 
rate17. However, it seems unlikely that both partly and fully convective stars would have the same rotation–
activity relationship (requiring both their dynamo efficiency and rotational dependence to behave in the same 
way) without their dynamo mechanisms sharing a major feature. 
 
A third possibility is that convection in the cores of fully convective stars could be magnetically 
suppressed27, leading to the existence of a solar-like tachocline, although some studies suggest that 
convection would not be completely halted, only made less efficient28. Furthermore, the field strengths that 
are necessary for such a transition are 107–108 G (refs 28, 29), orders of magnitude larger than the fields 
thought to exist in the solar interior and at levels that simulations suggest are impossible to maintain30. 
 

 

	
Figure	 1.	 Rotation–activity	 relationship	 diagram	 for	 partly	 and	 fully	 convective	 stars.	 Fractional	 X-ray	
luminosity,	LX/Lbol,	plotted	against	the	Rossby	number,	Ro	=	Prot/τ,	for	824	partly	(grey	circles)	and	fully	(red	circles)	
convective	 stars	 from	 the	 most	 recent	 large	 compilation	 of	 stars	 with	 measured	 rotation	 periods	 and	 X-ray	
luminosities7.	 The	 best-	 fitting	 saturated	 (horizontal)	 and	 unsaturated	 (diagonal)	 rotation–activity	 relationships	
from	that	study	are	shown	as	black	dashed	lines.	The	four	slowly	rotating	fully	convective	M	dwarfs	studied	here	are	
shown	 in	 light	 red	 (error	 bars	 indicate	 1	 standard	 deviation).	 The	 uncertainties	 for	 the	 other	 data	 points	 are	 not	
quantified	 but	 will	 be	 comparable	 to	 the	 M	 dwarfs	 for	 the	 Rossby	 number	 and	 approximately	 twice	 as	 large	 for	
LX/Lbol.	
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Figure 2. Top: toroidal magnetic energy against poloidal magnetic energy.
Stars with multiple maps are connected by grey lines. The dotted line in-
dicates hB2

tori = hB2
poli. The sample is split into stars less massive (pen-

tagon markers) and more massive than 0.5 M� (circle markers). See text
for further discussion of how these sub-samples were chosen. The two
dashed lines are best fit lines for these sub-samples; hB2

tori / hB2
polia with

a = 0.72 ± 0.08 and a = 1.25 ± 0.06 for M < 0.5 M� and M > 0.5 M�
respectively. AB Dor is shown with triangles. Each point is colour coded by
stellar mass. Bottom: toroidal energy fraction against stellar mass. Format
is the same as the top panel. Data-points are also colour coded by stellar
mass to aid comparison with the top panel. While the two panels show very
similar information, the di↵erence in behaviours of the two mass ranges is
much clearer in the bottom panel.

Throughout the rest of this paper, we will make use of the sur-
face averaged quantity, hB2i, where the components of B are given
by equation (1) - (3). This is proportional to the average magnetic
energy density over the surface of a given star.

3 RESULTS

3.1 Magnetic energy budget and saturation

One of the principle ways to split the stellar magnetic energy is into
its poloidal and toroidal components which is shown in Fig. 2. The
top panel shows toroidal magnetic energy density against poloidal
magnetic energy density while the bottom panel shows the toroidal
energy fraction against stellar mass. Both panels are colour coded
by stellar mass aiding comparison between them.

The top panel shows that the toroidal energy is an increasing
function of poloidal energy. We can attempt to fit a power law of the
form hB2

tori / hB2
polia. However, the sample seems to consist of two

Figure 3. Poloidal (top) and toroidal (bottom) magnetic energy against
Rossby number. The formatting is the same as Fig. 2. Right/left facing ar-
rows indicate stars that only have lower/upper estimates for their Rossby
numbers. The saturated and unsaturated regimes can be clearly seen with
the transition occurring at a Rossby number of approximately 0.1. Fits
to the stars in the unsaturated regime, hB2

poli / R�2.25±0.19
o and hB2

tori /
R�2.99±0.28

o , are shown with dashed lines. Note: the magnetic energy axes of
the two plots are not the same.

sub-samples. The stars with higher magnetic energy densities ap-
pear to have a smaller power index, a, than the lower energy stars.
A priori, it is not clear which stars should be included in which
sub-sample. In the bottom panel, a change of behaviour is evident
at approximately 0.5 M�. Stars with a larger mass than this can have
large toroidal energy fractions but lower mass stars cannot. Though
the two panels show essentially the same information, this break in
behaviour at 0.5 M� is much clearer in the bottom panel. A num-
ber of authors have previously discussed a sudden change in the
magnetic properties of M dwarfs at roughly 0.5 M� (Donati et al.
2008a; Morin et al. 2008b, 2010; Gregory et al. 2012). They note
that this break is roughly coincident with the fully convective limit
suggesting a link with the change in internal structure. Dividing our
sample on this basis, we find power index values of a = 0.72±0.08
and a = 1.25 ± 0.06 for stars less and more massive than 0.5 M�
respectively. These power laws are plotted in the top panel with
dashed lines. It is worth noting that, among the M < 0.5 M� stars,
it is the dipole dominate stars that deviate the most from the higher
index power law. The non-dipolar stars in the bistable regime, as
discussed by Morin et al. (2010), are roughly compatible with the
other power law. Additionally, theoretical models predict that these
non-dipolar stars can vary cyclically and are able to generate sig-
nificant toroidal fields (e.g. Gastine et al. 2013).

c� 0000 RAS, MNRAS 000, 000–000
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Figure 4. (a) Correlation between the average large-scale field strength
derived from the ZDI technique ⟨|BV|⟩ and Rossby number Ro, for the non-
accreting stars in our sample. Using Stokes I data, Reiners et al. (2009)
showed that ⟨|BI|⟩ saturates for Ro ! 0.1. Donati et al. (2008c) suggested
that there might be two different levels of saturation (dashed lines) among
the low-mass stars, caused by different efficiencies at producing large- and
small-scale fields. (b) Same as in (a), but now considering the magnetic flux
!V. Note that the bi-modality in the saturation level is removed if !V is
considered instead of ⟨|BV|⟩. Open symbols are as in Fig. 3. Solid lines show
power-law fits considering objects with Ro " 0.1. The dotted line (arbitrary
vertical offset) in the upper panel is indicative of the slope found from ZB
measurements between ⟨|BI|⟩ and Ro (Saar 2001).

change over a stellar magnetic cycle and this fact alone can also be
a source of scatter in our relations (although it is possibly not the
dominant source). For the large-scale field of the Sun, a variation of
a factor of ∼2 in ⟨|BV|⟩ is observed between the two maps used in
this work, when the Sun changed to a simplified, large-scale dipolar
topology at solar minimum (CR 1907) from a more complex one
at maximum (CR 1851). For stars like HD 190711, the variation of
⟨|BV|⟩ among the maps considered in this study is almost a factor
of 3.

3.1.4 Correlations with X-ray luminosity

Another interesting trend we found in our data is between the X-ray
luminosity LX and !V (Fig. 5). For the non-accreting stars we found
that LX ∝ !1.80±0.20

V . If we include the accreting objects, the slope

Figure 5. Correlation between X-ray luminosity LX and large-scale mag-
netic flux (!V = 4πR2

⋆ ⟨|BV |⟩) derived from the ZDI technique for the
non-accreting stars in our sample. The open symbols are as in Fig. 3 and
were not considered in the fit (solid line). The dotted line, at an arbitrary
vertical offset, is indicative of the slope found from ZB measurements for
dwarf stars between LX and !I = ⟨|BI |⟩4πR2

⋆ (Pevtsov et al. 2003). These
slopes are consistent with each other within 3σ , but samples with a large
dynamic range of ⟨|BI|⟩ are desirable to better constrain this result (see text).

Figure 6. Correlation between the ratio of X-ray-to-bolometric luminosity
(LX/Lbol) and large-scale magnetic field derived from the ZDI technique
(⟨|BV|⟩) for the non-accreting stars in our sample. The open symbols are as in
Fig. 3 and were not considered in our fit (solid line). The dashed line indicates
the saturation plateau for Ro ! 0.1 at log(LX/Lbol) ≃ −3.1 (Wright et al.
2011). The dotted line, at an arbitrary vertical offset, is indicative of the
slope found from ZB measurements (derived from results by Saar 2001;
Wright et al. 2011).

between LX and !V flattens and we find that L
(all)
X ∝ !0.913±0.054

V

(fit not shown in Fig. 5).
We also investigate the trend between the ratio of X-ray-to-

bolometric luminosity LX/Lbol and the large-scale magnetic field.
Considering the dwarf stars represented by the filled symbols in
Fig. 6, we found that LX/Lbol ∝ ⟨|BV|⟩1.61 ± 0.15 (solid line).

3.2 Accreting PMS stars

Fig. 1 shows that the accreting stars form a different population
compared to the discless stars. Besides the presence of the disc

MNRAS 441, 2361–2374 (2014)
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恒星の磁場強度とロスビー数

・磁場強度のRo依存性の観測も進展：

by	Zeeman	Doppler	Imaging

平均磁場強度 Bave	∝	Ro-1.4

ポロイダル磁場	
のエネルギー

Bp2	∝	Ro-2.3

トロイダル磁場	
のエネルギー

Bt2	∝	Ro-3.0

（VidoPo+14)

●

–

–

–
（See+15)

若い恒星ほどトロイダル磁場が支配的に

（See+15)



-	Magne7c	braking

Rossby数とは？

学は、日常経験で知っていることの説明、という性格が強い、と書きました。しか
し、これは大気や海の運動についてはあまり正しくない、ということも強調した
いと思います。大気や海の運動は、日常生活の中の流体運動とは異なり、自分の
目で見る、という経験が実は最近までほとんどありませんでした。もちろん、目
の前の海水や空気の動きを見ることはできます。しかし、何百キロ、何千キロと
いう大きなスケールで見たとき、大気や海の運動がどのように見えるのか、とい
うのは、もはや直観的には捕らえがたい領域に属します。近年、気象衛星が打ち
上げられるようになって、雲の動きを通して大気運動の様子が分かるようになっ
てきましたが、それでも、運動が何週間、何ヶ月もの時間をかけて変化していく、
というような現象は、日常的に親しんでいるとはとてもいえません。大気や海の
運動は、むしろ、日常経験では知らない流体運動、と言った方が良いでしょう。こ
こでは、そのような大規模スケールの流体運動についてお話ししたいと思います。

2 Navier-Stokes 方程式
とにかくも流体運動の基礎方程式です。
時刻 t で x = (x, y, z) という点における流体の状態は、各点における流体の密

度、速度（３成分）、圧力の合計５つの量を指定することで決まります。従って、
流体運動の方程式はこれらの量の時間変化を記述するもので、通常、質量、運動
量、エネルギー、の３つの保存則から導かれます。

流体の密度を ρ(t,x)、速度を u(t,x) = (u(t,x), v(t,x), w(t,x))、圧力を p(t,x)

とします（以下ではしばしば t や x の一方あるいは両方を省略することがありま
す）。これらの量を用いると、質量保存則は連続方程式

∂ρ

∂t
+ ∇ · (ρu) = 0 (3)

運動量保存則は Navier-Stokes 方程式

ρ(
∂u

∂t
+ u ·∇u) = −∇p + µ∆u (4)

になります。ここで ∇ = (∂/∂x, ∂/∂y, ∂/∂z)、∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 で
す。この Navier-Stokes 方程式に現れる係数 µ を粘性係数と呼びます。以下では、
簡単のため密度 ρ が一定の場合を中心に扱うので、エネルギー方程式は考えない
ことにします。

上の方程式は慣性系における流体の運動方程式です。座標系が、慣性系ではな
く、地球のように（あまり大きくない）回転角速度ベクトル Ωで一定回転してい
る場合には、方程式が次のように少し変形されます。

ρ(
∂u

∂t
+ u ·∇u + 2Ω × u) = −∇p + µ∆u　 (5)

4

平成15年度(第25回)数学入門公開講座テキスト(京都大学数理解析研究所，平成15年8月4日～8月7日開催) 

Ro ≡ 
2ΩL

V 慣性力	(V2/L)

コリオリ力	(2ΩV)
~

V	・・・系の典型的な速度
Ω	・・・系の角速度
L	・・・系の典型的な空間スケール

・恒星進化とロスビー数の関係
V	～	対流速度	∝ 星の光度 L1/2 

-	太陽では過去から現在までにLは30%増加
POLLACK (1981)

→	Vの変動は高々10%程度

Ribas (2004)

Ω	～	自転角速度
-	過去から現在までに1桁程度減少

-	星の質量光度関係：	L	∝	M4

→	Vは星の質量の違いに敏感
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横軸をRoにする（Vを考慮する）ことで星の質量の違いを補正



B or Ω
u

Rossby数とダイナモが関係する理由
Ro ≡ 

2Ω l
V 慣性力	(V2/ l)

コリオリ力	(2ΩV)
~

~ D 
-1

ω・V
V2/ l

●

コリオリ力： ローレンツ力：
Fc ∝ u × Ω FL ∝ u × Banalogy

rgyro  ∝ u/B λh ∝ u/Ω 

回転と対流の相互作用

→	渦度	ω	=	rot	u	~	u/λh	∝	Ω

∝
α =

（Dはダイナモ数）
α ~ τc ω・V
ηt ~ τc V2

ここで （乱流α効果：磁場の生成を担う効果）
（乱流磁気拡散効果：磁場の散逸を担う効果）

Roは磁場の生成・散逸効果の比

ηt k



乱流α効果と乱流磁気拡散 (横井さんが説明して下さった時は飛ばす)
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in dynamo models (e.g., Christensen and Aubert, 2006; Olson and
Christensen, 2006). As indicated by the Elsasser number, the Lor-
entz force is significant for the Earth and the gas giants, but may
be less so for the other planets. It is often assumed that the planets
are in magnetostrophic balance where the Lorentz and Coriolis
forces are comparable (e.g., Stevenson, 2003). The low K estimates
for Mercury, Ganymede, and the ice giants, however, do not sup-
port this hypothesis. Recent dynamo modeling results further dis-
pute the prevalence of magnetostrophic balance (e.g., Christensen
and Aubert, 2006; Soderlund et al., in review). The magnetic Pra-
ndtl numbers much less than unity suggest a separation of scales
between the magnetic and velocity fields where the magnetic flux
patches are large compared to the flow eddies. However, the
dynamical implications of low viscosity and rapid rotation on con-
vection and dynamo action are not well understood since it is dif-
ficult to study low Pm, low E systems.

3.3. Methods

Numerical models and laboratory experiments are valuable
tools to better understand the dynamics of planetary interiors.
Both approaches, however, are unable to reach the extreme plane-
tary parameter values due to computational and technological lim-
itations. Fortunately, many systems exhibit asymptotic behavior at
large or small values of the control parameters (e.g., Christensen
and Aubert, 2006; Aurnou, 2007; King et al., 2010). Large surveys
are carried out to map the behavioral regimes and to determine
how the control parameters influence the dynamics. With these
surveys, it is possible to develop scaling laws to quantify how
the dynamics (e.g., magnetic field strength, flow speeds, heat trans-
fer efficiency) depend on the control parameters. Researchers then
attempt to develop asymptotic scaling laws which can be extrapo-
lated to planetary conditions. For a recent review of scaling laws,
see Christensen (2010). Moreover, numerical models have shown
that convectively-driven dynamos in rotating spherical shells are
able to generate some of the key features of the planetary magnetic
fields (e.g., Stanley and Bloxham, 2004; Sakuraba and Roberts,
2009; Stanley and Glatzmaier, 2010). Recent planetary dynamo
models are summarized in the next section.

4. Planetary dynamo models

4.1. Terrestrial planets and Ganymede

In this section we discuss the modeling that has been carried
out to understand the dynamos in planets with molten iron-alloy
cores. The objects include the terrestrial planets, except for Venus,
and the outer planet satellite Ganymede. There is an enormous lit-
erature on the modeling of Earth’s dynamo and with our primary
focus being the magnetic fields of the other planets, we do not at-

tempt to review the geodynamo literature here. Instead we focus
on recent modeling attempts to explain the magnetic fields of Mer-
cury and Ganymede. Models of the ancient Martian dynamo will
also be discussed. See Kono and Roberts (2002), Glatzmaier
(2002), and Wicht et al. (2009) for reviews of geodynamo models.

4.1.1. Mercury
Dynamo modeling of Mercury’s magnetic field has focused on

explaining why it is so weak. Mercury’s magnetic dipole moment
is about 3.3 ! 4.2 " 1019 Am2 (Anderson et al., 2008). Compared
with Earth’s magnetic dipole moment of 7.8 " 1022 Am2, Mercury’s
moment is only about 5 " 10!4 that of Earth. Further, Mercury’s
magnetic dipole moment is about half that of Ganymede, which
is 1.32 " 1020 Am2, even though Ganymede, stripped of its ice
shell, has a radius only about 75% of Mercury’s radius. It has been
proposed that a stably-stratified layer at the top of the liquid part
of Mercury’s core might be responsible for weakening the external
dipole field (Christensen, 2006; Stanley and Mohammadi, 2008). In
the Christensen (2006) model, this weakening is due to attenuation
of the internally generated field by the electrically conducting sta-
ble layer. The Stanley and Mohammadi (2008) model emphasizes
the importance of thermal winds in the stable layer that induce
unfavorable zonal flows throughout the liquid part of the core. In
their models, the magnetic field is strongly time variable and the
external dipole can be either weak or strong. Another possible
explanation is the thickness of the liquid part of Mercury’s core
within which the dynamo operates. Dynamo action in a thin shell
can produce weak external dipole fields (Stanley et al., 2005;
Takahashi and Matsushima, 2006), while Heimpel et al. (2005b)
have produced single plume dynamos in a thick shell that are also
consistent with Mercury’s weak magnetic field.

Yet another explanation for Mercury’s weak magnetic field in-
volves the self-interaction of its internal dynamo with the magne-
tosphere created around the planet by the dynamo itself, a type of
feedback effect (Glassmeier et al., 2007; Gomez-Perez and
Solomon, 2010; Gomez-Perez and Wicht, 2010). Mercury is effec-
tively embedded in an external magnetic field generated by Chap-
man-Ferraro currents in its magnetopause. This self-generated
ambient magnetic field influences the dynamics of the internal
dynamo, similar to the way the Jovian magnetic field influences
dynamo action in Jupiter’s moon Ganymede (Sarson et al., 1997).
Chapman-Ferraro currents generate a magnetic field that enhances
the magnetospheric field and tends to cancel the field outside the
magnetosphere. In the dynamo region, the Chapman-Ferraro field
opposes the dynamo-generated field so that the dynamo is embed-
ded in an ambient field of opposite polarity. Glassmeier et al.
(2007) use a kinematic a–X-dynamo model to show that the feed-
back dynamo indeed has a Mercury-type solution with a weak
magnetic field. Recent self-consistent dynamo models with im-
posed external magnetic fields also support strong magnetospheric
feedback on weak internal fields (Gomez-Perez and Solomon,
2010; Gomez-Perez and Wicht, 2010).

The possibility that solid iron precipitation in Mercury’s core oc-
curs differently than it does in Earth’s core provides another feasi-
ble explanation for Mercury’s weak magnetic field (Vilim et al.,
2010). Laboratory experiments have shown that the Fe-S system
behaves in a non-ideal way at temperatures and pressures likely
encountered in Mercury’s core for sulfur concentrations between
about 7 and 12 wt% (Chen et al., 2008). As a consequence, iron
could precipitate at different places in the core depending on the
sulfur concentration; an Fe snowfall could originate from the top
or the mid-point of the core or from both locations. When Fe
freezes out at both the top and midway through the core, there
are two sources of compositional buoyancy, the heavy iron sinking
from the top of the core and from below mid-depth and the light S-
rich fluid rising above mid-depth. Vilim et al. (2010) modeled

Table 4
Order of magnitude estimates of key dimensionless parameters for the planets’
dynamo regions. Rm = 102 is assumed to estimate lower bounds for Re = Rm/Pm and
Ro = ReE. The K values neglect contributions from the toroidal field and the
unresolved poloidal components, which likely increase the estimate by an order of
magnitude.

Dynamo E Pr Pm Rm Ro Re K RDI/
RD

RD/
RP

Mercury 10!12 0.1 10!6 102 10!4 108 10!5 0.6 0.75
Earth 10!15 0.1 10!6 102 10!7 108 0.1 0.35 0.55
Jupiter 10!19 0.1 10!7 102 10!10 109 1 0.2 0.95
Ganymede 10!13 0.1 10!6 102 10!5 108 10!3 0 0.2
Saturn 10!18 0.1 10!7 102 10!9 109 0.01 0.5 0.5
Uranus 10!16 10 10!8 102 10!6 1010 10!4 0.6 0.8
Neptune 10!16 10 10!8 102 10!6 1010 10!4 0.4 0.8

100 G. Schubert, K.M. Soderlund / Physics of the Earth and Planetary Interiors 187 (2011) 92–108

(ref.	Schubert	&	Soderlund	2011)

Sun 10910-510-7 10-110-13

(ref.	Kapyla	2011)

※惑星に比べて太陽では慣性力の寄与が重要

天体のRossby数-Reynolds数と数値計算

1013

E M

U,N
J S

Planets

Sun

Stars

※Ek	～	Ro/Re（図中の黄色点線はEk一定の線）

α > ηtk
α < ηtk

simula7on

Disks

・Re-Roの相図上で,	恒星・円盤・惑星はそれぞれ異なるレジームに位置
・惑星や円盤,	若い恒星	→	Roの観点からは比較的ダイナモを起こしやすい
・太陽はRo	>	1のレジーム	→	ダイナモを起こすのが困難
・現実と数値計算の差は,	いずれの天体でも大きい

Ro ≡ α
ηt k

(磁場の生成効果)

(磁場の散逸効果)
=

~



F,G,K,M型の星のダイナモはRoがキーパラメター（Ro	>	0.1の範囲）

mechanism that does not rely on a shear layer. Existing dynamo simulations for fully convective stars 
succeed in generating magnetic fields, but are unable to predict their behaviour as a function of the rotation 
rate17. However, it seems unlikely that both partly and fully convective stars would have the same rotation–
activity relationship (requiring both their dynamo efficiency and rotational dependence to behave in the same 
way) without their dynamo mechanisms sharing a major feature. 
 
A third possibility is that convection in the cores of fully convective stars could be magnetically 
suppressed27, leading to the existence of a solar-like tachocline, although some studies suggest that 
convection would not be completely halted, only made less efficient28. Furthermore, the field strengths that 
are necessary for such a transition are 107–108 G (refs 28, 29), orders of magnitude larger than the fields 
thought to exist in the solar interior and at levels that simulations suggest are impossible to maintain30. 
 

 

	
Figure	 1.	 Rotation–activity	 relationship	 diagram	 for	 partly	 and	 fully	 convective	 stars.	 Fractional	 X-ray	
luminosity,	LX/Lbol,	plotted	against	the	Rossby	number,	Ro	=	Prot/τ,	for	824	partly	(grey	circles)	and	fully	(red	circles)	
convective	 stars	 from	 the	 most	 recent	 large	 compilation	 of	 stars	 with	 measured	 rotation	 periods	 and	 X-ray	
luminosities7.	 The	 best-	 fitting	 saturated	 (horizontal)	 and	 unsaturated	 (diagonal)	 rotation–activity	 relationships	
from	that	study	are	shown	as	black	dashed	lines.	The	four	slowly	rotating	fully	convective	M	dwarfs	studied	here	are	
shown	 in	 light	 red	 (error	 bars	 indicate	 1	 standard	 deviation).	 The	 uncertainties	 for	 the	 other	 data	 points	 are	 not	
quantified	 but	 will	 be	 comparable	 to	 the	 M	 dwarfs	 for	 the	 Rossby	 number	 and	 approximately	 twice	 as	 large	 for	
LX/Lbol.	
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太陽(全対流層)

濃赤丸：高速回転のM型
薄赤丸：低速回転のM型

白丸：太陽型 (対流層＋放射層)

(内部構造や光度[エネルギー注入の大きさ]などには直接的には依らない)

観測からの示唆：まとめ
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2.	ダイナモの数値計算の現状
～	ロスビー数の観点から	～



©D.	Hathaway

ダイナモの理論・数値計算の目標	～太陽をベースに～

：局在化　　一様分布	(diffuse)

：黒点の構造		≫	対流構造

：11年周期　　ランダム

太陽磁場（黒点）の3つの観測的特徴：
①周期性
②大局性

③収束性（集中性）

※時空間コヒーレンスの高い	
			磁場の形成機構の解明
※太陽型星のダイナモとも整合する必要性　
（太陽だけが特別というわけでも無さそう）



太陽ダイナモ計算の先駆け：Brun	et	al.	(2004)

no net Poynting flux through the shell (Fm ¼ 0 at the top and
bottom boundaries). The effect of closed as opposed to open
boundary conditions seems to be that in the former the magnetic
energy amplification is more efficient, with potentially a lower
dynamo threshold. But since in the solar case such magnetic
energy ‘‘leakage’’ exists both at the bottom via, for example,
turbulent pumping (Tobias et al. 2001) and at the photosphere
via, for example, magnetic eruptions, we consider that our
choice of boundary conditions is reasonable for the solar dy-
namo problem.We further believe that openmagnetic boundary
conditions play a central role in regulating themagnetic dynamo
action in the convection zone, by providing an outlet for the
magnetic energy and also most likely for the magnetic helicity.

4. CONVECTIVE AND MAGNETIC STRUCTURES

4.1. Flow Patterns and Their Evvolution

The structure of the convection in simulation M3 is illus-
trated in Figure 4. The convective patterns are qualitatively

similar to the hydrodynamic case H, which can be seen by
comparing the radial velocity field in the top left panel of
Figure 4 to that shown in Figure 1. Cases M1 and M2 also
exhibit similar patterns because the magnetic fields in these
simulations never grow strong enough to exert a substantial
influence on the global flow structure. However, Lorentz forces
in localized regions of case M3 do have a noticeable dynamical
effect, particularly with regard to the evolution of strong
downflow lanes where magnetic tension forces can inhibit
vorticity generation.

The horizontal structure of the radial and longitudinal
magnetic field is also shown in Figure 4. Many of the main
features are qualitatively similar to simulations of turbulent,
compressible magnetoconvection in Cartesian geometries
(Cattaneo 1999; Stein & Nordlund 2000; Tobias et al. 2001).
The magnetic field generally has a finer and more intricate
structure than the velocity field because of the smaller diffusion
(Prm ¼ !=" ¼ 4 in this simulation) and also the nature of the
advection terms in the induction equation, which are similar in

Fig. 4.—Global views at one instant in time of the radial velocity component (top panels) and the radial and longitudinal magnetic field components (middle and
bottom panels) in case M3 near the top (left panels) and middle (right panels) of the computational domain. Dark tones in turn represent downflow, inward, and
westward fields, with the ranges for each color table indicated. The color table is as in Fig. 1.
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・現実的太陽内部構造モデル	
　を使った初のMHD計算

vertically oriented sheets and filaments, B! is organized into
relatively broad ribbons and tubes that extend mainly in lon-
gitude. Figure 7b further demonstrates the ribbon-like topology
of the toroidal field, showing in particular that the low-latitude
horizontal patches near the surface have a relatively small
vertical extent, although some meander in radius. Substantial
magnetic helicity is present throughout, involving complex
winding of the toroidal field structures along their length.
Some features resemble magnetic flux tubes, but they generally
do not remain coherent long enough for magnetic buoyancy
forces to induce them to rise.

Whereas some toroidal field structures maintain coher-
ence over global scales, the radial field is generally dominated
by smaller scale fluctuations. In particular, radial field struc-
tures near the top of the domain rarely penetrate deep into
the convection zone, although individual field lines maintain
some connectivity throughout the shell. This connectivity also
extends outside of the computational domain because of the
boundary conditions that match the interior field to an ex-
ternal potential field. The structure of this potential field above
the outer surface is illustrated in Figure 7d. The extrapolation
shown in the figure treats the radial field near the top of the
domain as a source surface and requires that the field be radial
at 2:5R!, although field lines are only shown out to a radius of
1:5R!.

As in the Sun, the surface magnetic field is complex, fea-
turing bipolar regions, nested loops, and an intricate web
of connectivity between both local and widely separated re-
gions on the surface. Although some large loops span both
hemispheres, dipolar or quadrupolar components are not evi-
dent and open field is not confined to or even preferred in the
polar regions. Axisymmetric field components are indeed
present (see x 6), but the field morphology near the surface and
throughout the shell is dominated by smaller scale turbulent
structures.

The magnetic energy in the potential field extrapolation
decreases rapidly with increasing radius, as spherical harmonic
components decay in proportion to r"(lþ1). A less dramatic
outward gradient of magnetic energy also occurs within the
computational domain as demonstrated in Figure 8. Here we
display the radial profile of the total magnetic energy density
integrated over the horizontal dimensions after having broken
it down into mean (axisymmetric) and fluctuating (non-
axisymmetric) poloidal and toroidal components in the fol-
lowing manner:

MTE ¼ 1

8"
B!

! "2
; ð18Þ

MPE ¼ 1

8"
Brh i2þ B#h i2

# $
; ð19Þ

FTE ¼ 1

8"
B! " B!

! "% &2h i
; ð20Þ

FPE ¼ 1

8"
Br " Brh ið Þ2þ B# " B#h ið Þ2

h i
; ð21Þ

FME ¼ 1

8"
Br " Brh ið Þ2þ B# " B#h ið Þ2þ B! " B!

! "% &2h i
;

ð22Þ
where the angle brackets denote a longitudinal average.

The magnetic energy generally peaks toward the bottom of
the shell for both the mean and fluctuating field components.
This is due in part to the spherical divergence and the density
stratification. Downward pumping of magnetic fields by con-

vective motions also plays a role, but the pumping is not as
effective as in penetrative convection simulations where the
underlying stable region provides a reservoir where the field
can be accumulated and stored (see Tobias et al. 2001).

Figure 8 also shows that the magnetic energy contained in
the mean field components is more than an order of magnitude
smaller than that contained in the nonaxisymmetric fluctua-
tions. Most of the mean field energy is in the toroidal field,
which exceeds the energy in the poloidal field by about a factor
of 3 owing to the stretching and amplification of toroidal field
by differential rotation (the !-effect). This ratio is smaller than
in the Sun, where the mean toroidal field is estimated to be
about 2 orders of magnitude more energetic than the mean
poloidal field. This discrepancy can again be attributed to the
absence of an overshoot region and a tachocline, where the
toroidal field can be stored for extended periods while it is
amplified by relatively large angular velocity gradients (see
x 6). For the nonaxisymmetric fluctuations, the magnetic en-
ergy is approximately equally distributed among the toroidal
and poloidal fields, indicating that the turbulent convection can
efficiently generate both components in roughly equal mea-
sure, implying that the !-effect plays a lesser role.

5. DIFFERENTIAL ROTATION
AND MERIDIONAL CIRCULATION

Surface measurements and helioseismic inferences of large-
scale, axisymmetric, time-averaged flows in the Sun cur-
rently provide the most important observational constraints on
global-scale models of solar convection. The structure, evo-
lution, and maintenance of mean flows (averaged over longi-
tude and time) have therefore been a primary focus of previous
global convection simulations (Glatzmaier 1987; Miesch et al.
2000; Elliott et al. 2000; Brun & Toomre 2002). Of partic-
ular importance is the mean longitudinal flow, i.e., the differ-
ential rotation, which is now reasonably well established from
helioseismic inversions, although investigations continue to
scrutinize its detailed spatial structure and temporal evolution
(Thompson et al. 2003). The mean circulation in the meridional
plane has only been probed reliably in the surface layers of the
Sun through Doppler measurements (Hathaway et al.1996) and

Fig. 8.—Radial profiles of the magnetic energy in case M3. Shown are
integrals over horizontal surfaces and averages in time of the total magnetic
energy (ME), the energy in the mean (axisymmetric) toroidal field (MTE) and
the mean poloidal field (MPE), and the energy in the fluctuating (non-
axisymmetric) fields, including the toroidal component (FTE), the poloidal
component (FPE), and their sum (FME).
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components (e.g., Krause & Rädler 1980; Ossendrijver 2003).
In what follows, we define the mean poloidal field in terms
of the longitudinally averaged radial and latitudinal compo-
nents, hBpi ¼ hBriêr þ hB!iê!, and the mean toroidal field in
terms of the longitudinally averaged longitudinal component,
hBti ¼ hB"iê".

The generation of the mean toroidal field in our simulations
is due to the shearing, stretching, and twisting of mean and
fluctuating poloidal fields by differential rotation (the !-effect)
and helical convective motions (the # -effect). Likewise, mean
poloidal fields are generated from fluctuating toroidal fields via
the # -effect. The # -effect arises from correlations between
turbulent flows and fields as expressed in the mean (longitu-
dinally averaged) induction equation by the term ! ¼ h: <
(v0 < B0)i, where primes indicate that the axisymmetric com-
ponent has been subtracted off and angular brackets indicate a
longitudinal average (Moffatt 1978; Stix 2002; Brandenburg &
Subramanian 2004). We find that the fluctuating fields in our
simulations are much stronger than the mean fields, accounting
for up to 98% of the total magnetic energy, and the scale and
amplitude of their correlations are not small in any sense and
therefore cannot be reliably parameterized in terms of the mean
field. It appears that the generation of mean fields in our
simulations is not due to the # -effect in the traditional sense,
but rather to a more complex interplay between turbulent mag-
netic field and flow components. The chaotic nature of these
turbulent components gives rise to intricate structure and ape-
riodic evolution in the mean fields.

6.1. Poloidal Fields

Figure 11 illustrates the structure and evolution of the
mean poloidal field in case M3. Figures 11a–11d show four
snapshots of the magnetic lines of force of hBpi within the
convective domain along with a potential extrapolation of the
external field up to 2R#. The initial seed field was dipolar (i.e.,
antisymmetric with respect to the equator), but symmetric
fields (i.e., quadrupolar configurations) are also realized in our
simulations, as in Figure 11c. The evolution of the poloidal
magnetic field from an antisymmetric to a symmetric profile
with respect to the equator is made possible because of the
nonlinear and asymmetric nature of the convection that am-
plifies the field through dynamo action. The continuous ex-
change between dipolar and quadrupolar topologies, as well
as higher order multipoles, results in magnetic fields with in-
tricate configurations and with no clear equatorial symmetry
preferences. Within the convective shell the presence of strong
magnetic field gradients and magnetic diffusion leads to con-
tinuous reconnection of the magnetic field lines.

The perpetual regeneration of magnetic flux by the con-
vection can lead to a global reversal of the magnetic field po-
larity. Figure 11e shows the temporal evolution of the average
polarity of the poloidal field in case M3, defined in terms of the
radial magnetic field Br averaged over the northern hemisphere
of the outer boundary. This is a measure of the total magnetic
flux that passes through the northern hemisphere at the outer
surface of the shell, and since :=B ¼ 0 outside as well as

Fig. 11.—Temporal evolution of the mean poloidal field for case M3. (a–d) Structure of the field at four selected times after the magnetic energy has reached a
statistically steady state. Solid contours denote positive polarity (clockwise orientation), and dotted contours denote negative polarity. (e) Mean radial field at the
outer boundary averaged over the northern hemisphere, shown over the course of the entire simulation. The average polarity reverses after about 1750 days and
several more times afterward on a timescale of about 500 days. However, the field generally exhibits a complex topology with both symmetric and antisymmetric
components. The instants in time corresponding to the top panels are indicated in (e) with asterisks.
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-	乱流磁場が支配的
-	弱い平均場.	顕著な周期性は無し

-	当時の世界最高解像度計算
（128×512×1024）

：Ω	=	1Ωsun,		L	=	1Lsun
→	Ro	=	0.11
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・現実的太陽内部構造モデル

-	乱流モデル（sub-grid	scale）入りLES

MHD計算で初めて太陽ライクな準周期的な磁場の極性反転の再現に成功

-	Ω	=	1Ωsun,		L	=	1Lsun

-	低解像度・長時間計算
-	人工的な冷却関数
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2 National Center for Atmospheric Research, Boulder, CO 80307, USA
Received 2010 February 21; accepted 2010 April 28; published 2010 May 11

ABSTRACT

We report on a global magnetohydrodynamical simulation of the solar convection zone, which succeeds in generating
a large-scale axisymmetric magnetic component, antisymmetric about the equatorial plane and undergoing regular
polarity reversals on decadal timescales. We focus on a specific simulation run covering 255 years, during which
8 polarity reversals are observed, with a mean period of 30 years. Time–latitude slices of the zonally averaged
toroidal magnetic component at the base of the convecting envelope show a well-organized toroidal flux system
building up in each solar hemisphere, peaking at mid-latitudes and migrating toward the equator in the course of
each cycle, in remarkable agreement with inferences based on the sunspot butterfly diagram. The simulation also
produces a large-scale dipole moment, varying in phase with the internal toroidal component, suggesting that the
simulation may be operating as what is known in mean-field theory as an αΩ dynamo.

Key words: convection – magnetohydrodynamics (MHD) – Sun: activity – Sun: dynamo

1. NUMERICAL SIMULATIONS OF CONVECTION AND
THE SOLAR DYNAMO

It is now generally agreed upon that the solar activity cycle
ultimately owes its existence to the inductive action of fluid
flows pervading the solar interior. However, the turbulent na-
ture of these internal flows yields a computationally challenging
problem. Following the advent of high-performance computing,
parallelized versions of the Glatzmaier (1984) simulation model
made high-resolution calculations possible attaining a strongly
turbulent regime (see Miesch & Toomre 2009, and references
therein). Dynamo action in these simulations proved very effi-
cient at producing small-scale magnetic fields, but failed to gen-
erate a spatially well-organized large-scale component (Brun
et al. 2004). Toward this end, the presence of a stably stratified
tachocline-like layer, where significant rotational shear could
persist, was shown by Browning et al. (2006) to be an im-
portant, possibly essential ingredient. These authors succeeded
in producing a large-scale magnetic component, antisymmetric
about the equator and persistent on yearly timescales. However,
no polarity reversals were observed over the 8 year time span of
these simulations.

Herein, we report on a series of global magnetohydrodynam-
ical (MHD) simulations of the solar convection zone (SCZ),
conceptually similar to those referenced above, that do produce
well-organized large-scale magnetic fields undergoing regular
cyclic polarity reversals on decadal timescales. Our model in-
tegrates the anelastic form of the MHD equations (Glatzmaier
1984) in a thick, rotating spherical shell of electrically con-
ducting fluid. We use a modified version of the general-purpose
hydrodynamical simulation code EULAG (see Prusa et al. 2008
for a review) in which we have introduced magnetic fields and a
solar-like, spherically symmetric stratification of the static am-
bient state. Our overall simulation setup is similar to that in
Browning et al. (2006). The solution domain spans the range
0.61 ! r/R⊙ ! 0.96, covering 3.4 density scale heights and
across which we force the solar heat flux. The ambient stratifi-
cation is convectively stable in the bottom portion of the domain
(0.61 ! r/R⊙ ! 0.71) and unstable above. Stress-free bound-
ary conditions are imposed at the top and bottom boundaries,
with the magnetic field constrained to remain radial (magneti-

cally open). We defer an exposition of the model formulation to
a forthcoming publication, with only a few highlights provided
below.

The anelastic hydrodynamic SCZ model of Elliot &
Smolarkiewicz (2002) is cast in an anholonomic time-dependent
curvilinear framework of Prusa & Smolarkiewicz (2003) and
extended to MHD. The governing equations take the form

Dv
Dt

= −∇π − g
θ ′

θo

+ 2v′ × Ω +
1

µρo

(B · ∇) B + Dv,

Dθ ′

Dt
= −v · ∇θe + H − αθ ′, (1)

DB
Dt

= −∇π∗ + (B · ∇) v − B(∇ · v) + DB,

∇ · (ρov) = 0,∇ · B = 0,

where v and B denote vectors of the physical velocity and of
the magnetic field, measurable at every point of the spherical
shell in a local Cartesian frame tangent to the lower surface of
the shell, and θ is the potential temperature (tantamount to the
specific entropy, s = cp ln θ ). Subscripts “o” refer to the basic
isentropic state with density satisfying hydrostatic balance with
g ∝ r−2. Primes denote deviations from a prescribed ambient
state different, in general, than the basic state (Prusa et al.
2008). In the momentum equation, π is a density-normalized
pressure perturbation inclusive of the magnetic pressure and
centrifugal force, and Dv symbolizes viscous dissipation. In
the entropy equation, H combines heat sink/sources due to
radiation, diffusion, and viscous heating. A weak Newtonian
cooling (here α = 2 × 10−8 s−1) damps entropy departures
from the ambient stable/unstable thermodynamic profile in
the tachocline/SCZ. In the induction equation, the gradient
of potential π∗ denotes an auxiliary term introduced to assure
∇ · B = 0 in numerical integrations, and DB is a shorthand for
magnetic diffusion. All other symbols have their usual meaning.

Using the mass continuity equation and the solenoidality
constrain on B, the system (1) is rewritten as a set of Eulerian
conservation laws and solved using the non-oscillatory forward-
in-time (NFT) approach, widely documented in the literature;
see Prusa et al. (2008) and Smolarkiewicz & Szmelter (2009) for
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(a) (c)
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Figure 1. (a) Normalized time-averaged mean rotation profile Ω/Ω0 =
Uφ/(Ω0r sin θ ) + 1. (b) Relative kinetic helicity density hrel. (c) Rotation profile
(color contours) and meridional circulation Um = (Ur, U θ , 0) (arrows) near
the equator. From Run B4m.
(A color version of this figure is available in the online journal.)

and p is the pressure. The fluid obeys the ideal gas law with
p = (γ − 1)ρe, where γ = cP/cV = 5/3 is the ratio of
specific heats at constant pressure and volume, respectively, and
e = cVT is the internal energy. The gravitational acceleration
is g = −GM r̂/r2, where G is the gravitational constant,
M is the mass of the star, and r̂ is the unit vector in the
radial direction. We omit the centrifugal force (cf. Käpylä
et al. 2011b). The rate of the strain tensor S is given by
Sij = (1/2)(ui;j + uj ;i) − (1/3)δij∇ · u, where the semicolons
denote covariant differentiation (Mitra et al. 2009).

2.1. Initial and Boundary Conditions

The initial state is isentropic and the hydrostatic temperature
gradient is ∂T/∂r = −g/[cV(γ − 1)(m + 1)], where m = 1.5

Figure 2. Bφ near the surface of the star at r = 0.98 R as a function of latitude
90◦ − θ for Co = 4.7 ((a), Run B3m), 7.6 ((b), B4m), and 14.8 ((c), B5m). The
white dotted line denotes the equator 90◦ − θ = 0.
(A color version of this figure is available in the online journal.)

is the polytropic index. We fix the value of ∂T/∂r on the
lower boundary. The density profile follows from hydrostatic
equilibrium. The heat conduction profile is chosen so that
radiative diffusion is responsible for supplying the energy
flux in the system, with K decreasing more than two orders
of magnitude from bottom to top (Käpylä et al. 2011a). A
weak random small-scale seed magnetic field is taken as initial
condition (see below).

The radial and latitudinal boundaries are taken to be impen-
etrable and stress free; see Equations (14) and (15) of Käpylä
et al. (2011b). For the magnetic field we assume perfect con-
ductors at the lower radial and latitudinal boundaries, and radial
field at the outer radial boundary; see Equations (15)–(17) of
Käpylä et al. (2010). On the latitudinal boundaries we assume
that the thermodynamic quantities have zero first derivatives,
thus suppressing heat fluxes through the boundaries.

On the upper boundary we apply a blackbody condition

σT 4 = −K
∂T

∂r
− χtρT

∂s

∂r
, (5)
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Figure 3. (a) Bφ (r, t) in units of the local equipartition field strength at 25◦

latitude for Run B4m shown in Figure 2(b). (b) Blow-up of Figure 2(b) showing
the region −60◦ < 90◦ − θ < 60◦ and 2200 < turmskf < 3200 at r = 0.98 R.
(c) Like Figure 2(b), but at r = 0.85 R and Bφ is normalized by its volume-
averaged rms value at each time to make the early time evolution visible.
(A color version of this figure is available in the online journal.)

where σ is the Stefan–Boltzmann constant. We use a modified
value for σ that takes into account that our Reynolds and
Rayleigh numbers are much smaller than in reality, so K and
therefore the flux are much larger than in the Sun.

2.2. Dimensionless Parameters

We obtain non-dimensional quantities by choosing R =
GM = ρ0 = cP = µ0 = 1, where ρ0 is the initial density at
0.7 R. Our simulations are defined by the energy flux imposed at
the bottom boundary, Fb = −(K∂T/∂r)|r=0.7R , the temperature
at the top boundary, T1 = T (r = R), as well as the values
of Ω0, ν, η, and χtm = χt(rm = 0.85 R). The corresponding
non-dimensional input parameters are the luminosity parameter
L = L0/[ρ0(GM)3/2R1/2], the normalized pressure scale height
at the surface, ξ = [(γ − 1)cVT1]GM/R, the Taylor number
Ta = (2ΩR2/ν)2, the Prandtl number Pr = ν/χtm, the magnetic
Prandtl number Pm = ν/η, and the non-dimensional viscosity
ν̃ = ν/

√
GMR. Other useful diagnostic parameters are the

Reynolds number Re = urms/νkf and the Coriolis number

Figure 4. Top panel: Bφ (black line) and Br (red) at 90◦−θN = 25◦ latitude. The
blue line shows 0.5Br at θ0. Bottom panel: Bφ from θN and θS corresponding
to latitudes ±25◦, respectively.
(A color version of this figure is available in the online journal.)

Co = 2Ω0/urmskf , where urms = ((3/2)⟨u2
r + u2

θ ⟩)1/2 is the
rms velocity. Note that for urms we omit the contribution
from the azimuthal velocity, because its value is dominated
by effects from the differential rotation (Käpylä et al. 2011b).
The Taylor number can also be written as Ta = Co2Re2(kfR)4,
with kfR ≈ 21. Due to the fact that the initial stratification is
isentropic, we quote the (semi-) turbulent Rayleigh number Rat
from the thermally relaxed state of the run,

Rat =
GM(∆r)4

νχtmR2

(
− 1

cP

ds

dr

)

rm

, (6)

where kf = 2π/∆r is an estimate of the wavenumber of the
largest eddies and ∆r = 0.3 R is the thickness of the layer.
The magnetic field is expressed in equipartition field strengths,
Beq(r) = ⟨µ0ρu2⟩1/2

θφ , where the subscripts indicate averaging
over θ and φ with azimuthally averaged mean flows subtracted.

The simulations were performed with the Pencil Code,4
which is a high-order finite difference method for solving the
compressible equations of magnetohydrodynamics.

3. RESULTS

Our primary simulation (Run B4m) is continued from a
thermally relaxed snapshot of a hydrodynamic Run B4 of
Käpylä et al. (2011a) with L = 3.8 × 10−5, ξ = 0.02,
Ta ≈ 1.4 × 1010, ν̃ = 2.9 × 10−5, and Pr = 2.5, resulting
in Re = 36, Co = 7.6, and Rat ≈ 3 × 106. The discussion
of the results refers to this run unless stated otherwise. We also
consider two other runs with Co = 4.7 and Re = 39 (Run B3m),
as well as Co = 14.8 and Re = 31 (Run B5m). The former is
continued from Run B3 of Käpylä et al. (2011a) whereas the
latter is run from the initial conditions stated above. Our seed
magnetic field has an amplitude of ≈10−4 Beq. As a starting
point, we use Pm = 1 and a resolution of 128×256×128 mesh

4 http://code.google.com/p/pencil-code/
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which is a high-order finite difference method for solving the
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Our primary simulation (Run B4m) is continued from a
thermally relaxed snapshot of a hydrodynamic Run B4 of
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Figure 3. (a) Volume-averaged temporal auto-correlation of toroidal mag-
netic energy generation by mean shear (S = λ⟨BP⟩ ·∇⟨Ω⟩, blue curve) and
the same for the mean Lorentz force impacting the mean angular velocity
(Lφ, red curve) plotted against temporal lags ∆t normalized by the polarity
cycle period τC = 6.2 years. Confidence intervals are shown as shaded gray
regions, with the 67% interval in darker gray and 95% in lighter gray. (b)
Cross-correlation of the mean poloidal energy production (P = BP ·∇×E ′

φ)
through the fluctuating EMF and the toroidal magnetic energy production due
to the mean shear (T = ⟨Bφ⟩S), showing the nonlinear dynamo wave character
of the solution.

the value of a quantity at the outer boundary of the simula-
tion. However, this is likely not dynamically dominant as the
the polarity reversal occurs in half that time. The same is
true of the diffusion time across the convection zone, being
4.6 years. Since the cycle is likely not resistively controlled it
must be the interplay of dynamical processes. Another mech-
anism to consider is the cycle time related to flux transport by
the meridional flow, then the transit time of a magnetic ele-
ment along its circuits could be relevant. In D3S, the mean
meridional flow is anti-symmetric about the equator and has
two cells, with a polar branch and a lower latitude cell that are
split by the tangent cylinder. The circulation time of the polar
branch is about 0.7 years, whereas that of the equatorial cell
is about a year. So it is also unlikely that the meridional flow
is setting the cycle period.
The dynamical coupling of azimuthally-averaged magnetic

fields ⟨B⟩ and the mean angular velocity ⟨Ω⟩ (Figure 2(b))
plays a crucial role in regulating the cycle, though it alone
cannot be the sole actor as is well known from Cowling’s
anti-dynamo theorem. The significant anti-correlation of ⟨Bφ⟩
and angular velocity variations ⟨∆Ω⟩ during reversals be-
comes apparent when comparing Figures 1(c) and 2(c), re-
vealing the strong nonlinear coupling of the magnetic field
and the large-scale flows. The dynamics that couples these
two fields is the toroidal field generation through the mean
shear (S = λ⟨BP⟩ ·∇⟨Ω⟩, with ⟨BP⟩ the mean poloidal field)
and the mean azimuthal Lorentz-force (Lφ = φ̂ · ⟨J⟩× ⟨B⟩),
which acts to decrease ⟨Ω⟩. The auto-correlation of each of
these components of the MHD system reveals that Lφ varies
with a period corresponding to the magnetic energy cycle,
whereas S varies on the polarity cycle period (Figure 3). It
also shows the high degree of temporal self-similarity be-

Figure 4. An interval of magnetic quiescence. (a) Time-latitude diagram of
⟨Bφ⟩ at 0.95R⊙ in cylindrical projection, picturing the loss and reappearance
of cyclical polarity reversals as well as the lower amplitude of the wreaths.
Strong positive toroidal field is shown as red, negative in blue. (b) Normal-
ized magnetic dipole moment (red) and the quarupolar moment (blue). The
quadrupole moment peaks near reversals, indicating its importance.

tween cycles, with the auto-correlation of both quantities re-
maining significant with 95% confidence for a single polarity
cycle and with 67% confidence for three such cycles.
Appealing to Figure 1(c), it is evident that B exhibits a

high degree of spatial and temporal self-similarity, though
with reversing polarity. Thus the period apparent in the auto-
correlation for Lφ might be expected. Furthermore, if we
simply let ⟨B⟩ ≈ B0(r,θ)exp(iωCt), the Lorentz forces could
be characterized very roughly as Lφ ∝ Lφ,0 exp(iωLt) ∼ B0 ·
B0/ℓexp(2iωCt), with cycle frequency ωC = 2π/τC and some
length scale ℓ. Hence, the magnetic energy or Lorentz cycle
frequency ωL = 2π/τL implies that 2τL = τC . What is poten-
tially more curious is that S varies on the cycle period. While
Figure 2(c) might suggest a reversal in the solar-like character
of the differential rotation. This in fact does not occur. Rather,
the shear is significantly weakened but maintains the positive
latitudinal gradient that sustains the toroidal magnetic field,
which renders the sign of ∇Ω independent of time. There-
fore, the polarity reversals in ⟨BP⟩ require that S vary with the
polarity cycle period τC .

5. EQUATORWARD PROPAGATION
As with ASH and EULAG, simulations in spherical seg-

ments that employ the Pencil code also obtain regular cycli-
cal magnetic behavior. Some of these polarity reversing so-
lutions exhibiting equatorward propagating magnetic features
(Käpylä et al. 2012), magnetic flux ejection (Warnecke et al.
2012), and 33-year magnetic polarity cycles (Warnecke
2013). Currently, however, the mechanism for the equator-

2 Augustson et al.

Figure 1. Nature of the toroidal magnetic field Bφ. (a) Snapshot of the horizontal structure of Bφ at 0.95R⊙ shown in Mollweide projection, at the time
corresponding to the vertical dashed line in (c). This illustrates the azimuthal connectivity of the magnetic wreaths, with the polarity of the field such that red
(blue) tones indicate positive (negative) toroidal field. (b) Azimuthally-averaged ⟨Bφ⟩ also time-averaged over a single energy cycle, depicting the structure of
the toroidal field in the meridional plane. (c) Time-latitude diagram of ⟨Bφ⟩ at 0.95R⊙ in cylindrical projection, exhibiting the equatorward migration of the
wreaths from the tangent cylinder and the poleward propagation of the higher latitude field. The color is as in (a). (d) A rendering of magnetic field lines in the
domain colored by the magnitude and sign of Bφ, with strong positively oriented field in red, and the strong oppositely directed field in blue.

ducting at the lower boundary and extrapolated as a potential
field at the upper boundary.
The authors have implemented a slope-limited diffusion

(SLD) mechanism into the reformulated ASH code, which is
similar to the schemes presented in Rempel et al. (2009) and
Fan et al. (2013). SLD acts locally to achieve a monotonic so-
lution by limiting the slope in each coordinate direction of a
piecewise linear reconstruction of the unfiltered solution. The
scheme minimizes the steepest gradient, while the rate of dif-
fusion is regulated by the local velocity. It is further reduced
through a function φ that depends on the eigth power of the
ratio of the cell-edge difference δiq and the cell-center differ-
ence ∆iq in a given direction i for the quantity q. This limits
the action of the diffusion to regions with large differences in
the reconstructed solutions at cell-edges. Since SLD is com-
puted in physical space, it incurs the cost of smaller time steps
due to the convergence of the grid at the poles. The result-
ing diffusion fields are projected back into spectral space and
added to the solution.
We simulate the solar convection zone, stretching from the

base of the convection zone at 0.72R⊙ to the upper bound-
ary of our simulation at 0.97R⊙. This approximation omits
the near-surface region and any regions below the convec-
tion zone. The SLD has been restricted to act only on the
velocity field in this simulation. This mimics a lower thermal
and magnetic Prandtl number (Pr, Pm) than otherwise attain-
able through an elliptic diffusion operator. The entropy and
magnetic fields remain under the influence of an anisotropic
eddy diffusion, with both a radially dependent entropy dif-
fusion κS and resistivity η. These two diffusion coefficients
are similar to those of case D3 from (Brown et al. 2010), with
κS,η ∝ ρ −1/2, with ρ the spherically symmetric density. The
stratification in this case has about twice the density contrast
across the domain, being 45 rather than 26, and has a resolu-
tion of Nr×Nθ×Nφ = 200× 256× 512.

3. CYCLICAL CONVECTIVE DYNAMO ACTION
Global-scale convective dynamo simulations in rotating

spherical shells have recently achieved the long-sought goal
of cyclical magnetic polarity reversals with a multi-decadal
period. Moreover, some of these simulations have illustrated
that large-scale dynamo action is possible within the bulk
of the convection zone, even in the absence of a tachocline.
Global-scale MHD simulations of a more rapidly rotating
Sun with the pseudo-spectral Anelastic Spherical Harmonic

(ASH) code have produced polarity reversing dynamo ac-
tion that possesses strong toroidal wreaths of magnetism that
propagate poleward as a cycle progresses (Brown et al. 2011).
These fields are seated deep within the convection, with the
bulk of the magnetic energy near the base of the convec-
tion zone. The perfectly conducting lower boundary condi-
tion used here and in those simulations requires the field to
be horizontal there, which tends to promote the formation of
longitudinal structure in the presence of a differential rotation.
A recent simulation with ASH employs a dynamic

Smagorinski diffusion scheme, wherefore they achieve a
greater level of turbulent complexity. Those simulations show
that the large-scale toroidal wreaths persist despite the greater
pummeling they endure from the more complex and vigorous
convection (Nelson et al. 2013a). Not only do the toroids of
field persevere, but portions of them can be so amplified that
the combination of upward advection and magnetic buoyancy
create loops of magnetic field (Nelson et al. 2013b). This
lends credence to the classical picture of a Babcock-Leighton
or Parker interface dynamo (Leighton 1969; Parker 1993),
with semi-buoyant flux structures that rise toward the solar
surface, leading to active regions and helicity ejection. There
is the caveat that the magnetic fields in the simulation are in-
stead built in the convection zone.
Implicit large-eddy simulations (ILES) have concurrently

paved the road toward more orderly long-term cycles in a set-
ting that mimics the solar interior. Indeed, simulations uti-
lizing the Eulerian-Lagrangian (EULAG) code produce reg-
ular polarity cycles occurring roughly every 80 years in the
presence of a tachocline and with the bulk of the magnetic
field existing at higher latitudes (Ghizaru et al. 2010). This
simulation showed radial propagation of structures but little
latitudinal variation during a cycle. More recent simulations
of a Sun-like star rotating at 3Ω⊙ also produce low-latitude
poleward propagating solutions (Charbonneau 2013). Such
dynamo action is accomplished first through the reduction of
the enthalpy transport of the largest scales through a simple
sub-grid-scale (SGS) model that diminishes thermal pertur-
bations over a roughly 1.5 year time scale, which serves to
moderate the global Rossby number. The ILES formulation
of EULAG also maximizes the complexity of the flows and
magnetic fields for a given Eulerian grid resolution.
Inspired by these recent ASH and EULAG results, we have

attempted to splice the two together by incorporating SLD
into ASH with the express goal of achieving a low effective

Augustson+13

・太陽型の強密度成層モデル

・Ro	=	0.02
(Brun+04より3~5倍速い回転に相当)

・ドリフトを伴う準周期的極性反転

・現実的太陽内部構造モデル

-	Ω	=	3Ωsun,		L	=	1Lsun
(初めてgrand-minimumを得た計算)

Ro ≡ 
2Ω l

V →	Ωが大きい,	つまり	
　	Roの小さい計算

太陽とは異なるパラメータ設定

約15年周期 約6年周期
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Figure 5. (a) Latitude-time variation of the mean (azimuthally averaged) toroidal magnetic field at a depth (r = 0.73 Rs ) near the bottom of the CZ. (b) Azimuthally
averaged toroidal magnetic field distribution in the meridional plane at the time marked by the green line in panel (a). (c) A shell slice of the toroidal magnetic field at
a depth (r = 0.73 Rs ) near the bottom of the CZ at the same time marked by the green line in panel (a).
(A color version of this figure is available in the online journal.)

averaged velocity components and only sum up the azimuthally
fluctuating parts of the velocity components. Also shown are
the corresponding magnetic field strength in equipartition with
the peak downflow speed (solid red curve) and the rms speed
(dash–dotted red curve). It can be seen that the equipartition field
strength Beq corresponding to the peak down flow speed reaches
≈63 kG, while Beq corresponding to the rms speed is ∼10 kG
for the deep and mid-convection zone, and decrease to about
5000 G near the top boundary at about r = 0.971 Rs . Following
Käpylä et al. (2012), we compute the following non-dimensional
numbers characterizing the convective flows. The Reynolds
number Re = urms/νkf ranges from about 130 at the bottom to
about 50 at the top, and with a mid-convection zone value of
about 128, where kf = 2π/(ro−ri) and urms = ((3/2)⟨vr

2+vθ
2⟩)

is the rms velocity averaged over each depth, omitting the
contribution from the azimuthal velocity. The Coriolis number
CO = (2Ω/urms,all kf ) = 1.3, where urms,all = ((3/2)⟨vr

2+vθ
2⟩)

with the averaging ⟨⟩ done for the entire domain. We can
compare the values of these non-dimensional numbers with
the corresponding ones in Käpylä et al. (2012): Re = 36
and CO = 7.6. It appears the convective flow in our dynamo
simulation is moderately more turbulent as characterized by the
larger Re, especially in the deeper layers of the CZ. Our Coriolis
number CO is significantly lower, indicating that our convective
dynamo is operating in a significantly less rotationally dominant
regime. If we were to scale their typical rms velocity to be
similar to ours urms,all ≈ 100 m s−1, then their CO would imply
a significantly more rapidly rotating stellar envelope (with the
solar CZ depth) at about five times the solar rotation rate.

Figure 5(a) shows the latitude-time variation of the mean
(azimuthally averaged) toroidal magnetic field at a depth near
the bottom of the CZ. The mean toroidal magnetic field tends
to be of opposite signs for the two hemispheres, and exhibits an
irregular cyclic behavior with oscillations of the field strength on
timescales ranging from about 5 to about 15 yr and undergoes
irregular sign/polarity reversals. The strongest mean toroidal
field is concentrated near the bottom of the CZ (see Figure 5(b)),
peaking at about 7 kG. Figure 5(c) shows a shell-slice of Bφ

at a depth near the bottom of the CZ, at a cycle maximum
phase indicated by the green line in Figure 5(a). It shows that
strong toroidal fields Bφ of a preferred sign (opposite for the
two hemispheres) are concentrated in individual channels or
filaments in each hemisphere, reaching a peak field strength of
about 30 kG, which exceeds the field strength in equipartition
with the local rms convective speed (Beq ≈ 13 kG), but is below
the equipartition field strength corresponding to the peak down
flow speed (Beq ≈ 63 kG). Thus, these strong field filaments
are not passively advected by convective flows, but would be
pinned down by the strong down flows if in their paths.

3.2. Maintenance of the Solar-like Differential Rotation

Figure 6(a) shows the time and azimuthally averaged rotation
rate in the convective envelope self-consistently maintained
in the convective dynamo simulation. It shows a solar-like
differential rotation profile (e.g., Thompson et al. 2003) with
a faster rotation rate at the equator than at the polar region
by about 30% of the mean rotation rate, and more conical
shaped iso-rotation contours in the mid-latitude zone. The

4

variation is seen (Fig. 2A). Then, these features
become weak in the case Medium (Fig. 2B).
When the resolution is increased further, the co-
herent magnetic field and its cycle are recovered
(Fig. 2C). Shown in Table 1 are the turbulent

magnetic energy density B′2/(8p), where B′ ¼
B − hBi, and mean magnetic energy hBi2=ð8pÞ
averaged from 0.715R⊙ to 0.73R⊙, where the
mean magnetic field is concentrated. Whereas
the turbulent magnetic energy (dominant con-

tribution to total magnetic energy) increases
monotonically with increasing the resolution,
themeanmagnetic energyhas a different behavior.
From Low to Medium, the energy decreases by a
factor of 3, and half of themeanmagnetic energy
from the case Low is recovered in the case High.
Our finding can be understood with Fig. 3,

which shows the energy spectra at the base of the
convection zone (r = 0.72R⊙). Whereas in case
Medium, the magnetic energy is always smaller
than the kinetic energy, indicating an inefficient
small-scale dynamo, the small-scale (l > 40, where
l is the spherical harmonic degree) magnetic en-
ergy exceeds the kinetic energy in the case High.
This is an indication of an efficient small-scale
dynamo. The possibility that the strong small-
scale magnetic field is generated by the small-
scale dynamo is supported by fig. S3. From the
calculation without rotation (only small-scale dy-
namo action), we find a ratio (Emag/Ekin) compa-
rable with that of the case High. From this, we
conclude that the small-scale magnetic field in
the case High is mostly generated by the small-
scale dynamo.
The velocity amplitude in the small scale is

significantly suppressed by the small-scale mag-
netic field. In the case Medium, the small-scale
flow leads to destruction of the global magnetic
field. This is confirmed with an additional calcu-
lation for the caseMediumwith the same explicit
viscosity as the case Low, but no explicit magnet-
ic diffusivity (fig. S4). That calculation also shows
a similar level of coherent global-scale magnetic
field as the case Low. In this control experiment,
the large viscosity suppresses the small-scale flow,
which tends to destruct the global-scale magnetic
field, whereas in the case High, the suppression is
a consequence of feedback from the strong small-
scale magnetic field. Previous studies suggested
that the nonlinearity of the magnetic field can
suppress the exponential growth of the small-
scale dynamo and set a finite amplitude of the
magnetic field, which may be essential in allow-
ing the reproduction of the large-scale magnetic
field (8, 9). Because our calculation is nonlinear,
this effect is included. Our new finding here is
that the suppression of the small-scale flow sup-
ports the construction of large-scale magnetic
field, and small-scale dynamo is still efficient. Be-
cause the case High-S continues only a short time
owing to the restriction of our computer resource,
we cannot conclude that the large-scale magnetic
field in the case High-S is self-consistently gen-
erated by the large-scale dynamo. However, we
can check the numerical convergence and the
tendency of the small-scale dynamo in the currently
unreachable high-resolution calculation. The kinetic
andmagnetic energy spectra of the cases High and
High-S are shown in fig. S5. This figure shows
that when we adopt higher resolution, the small-
scale velocity is more reduced; our obtained effect
is more promoted in higher resolution.
Our result demonstrates that a global-scale co-

herentmagnetic field canbemaintained evenwith
small viscosity and magnetic diffusivity, provided
that the Lorentz-force feedback from a small-scale
magnetic field is strong enough. We roughly
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Fig. 2. Toroidal magnetic field at the base of the convection zone. (A to C) Zonally averaged toroidal
magnetic fieldhBfi at r = 0.72R⊙.The result from the cases Low, Medium, and High are shown in (A), (B),
and (C), respectively.

Fig. 3. Spectra of the cases Medium and High.
The kinetic (solid) and magnetic (dotted) energy
spectra at r = 0.72R⊙.The red line shows the result
from the case Medium. The blue and black lines
show the result from the cases High without mag-
netic field (hydrodynamic) and High with magnetic
field, respectively. The averaged period is the same
as Table 1, from 5000 to 12,500 days.

RESEARCH | REPORTS

Fan	&	Fang	‘15 Hoga+16

・現実的太陽内部構造モデル
：Ω	=	1Ωsun,		L	=	1Lsun

-	FF15:	より低解像度（96x512x768）
→	基本的にはBrun+04と同じ設定

-	Hoga+16:	より高解像度	(256x768x1536)

→	より大きな粘性
→	より小さな対流速度
→	より小さいロスビー数

→	効率的な小スケールダイナモ
→	“物理的に”より小さな対流速度
→	“物理的に”より小さいロスビー数

Ghizaru	et	al.	(2010)以後の発展②
Fan	&	Fang	‘15に相当

Brun+04に相当

世界最高解像度でリカバー

理論的にもロスビー数の大きさは鍵

太陽のパラメータ設定



3.	対流ダイナモのロスビー数依存性



z

x

y

Nx×Ny×Nz	=	2563

●	計算設定：恒星の対流層を模擬した強い密度成層モデル

Godunov	CMoC-CT

※アスペクト比	
			は実際と異なる

The large-scale dynamo observed here in the strongly
stratified model has physical properties similar to those in the
weakly stratified convective dynamo simulations (e.g., Käpylä
et al. 2013; MS14a). Because of the horizontal symmetry and
thus no differential rotation in our system, the turbulent
electromotive force would be solely responsible for the dynamo
(see MS14b for a mean-field α2-dynamo model that can
quantitatively reproduce the DNS results). Our intriguing
finding in this Letter, which has not been observed in the
weakly stratified model with similar boundary conditions, is a
spontaneous formation of large-scale magnetic structures in the
CZ surface, which will be reported in the following sections.

3.2. Spontaneous Formation of Surface Magnetic Structure

A series of snapshots where the distribution of the Bz at
different times on the horizontal cutting plane at z/dcz = 0.04 is
shown in the top panel of Figure 3(a). The darker (lighter) tone
denotes positive (negative) Bz. While Bz has a small-scale
tangled structure with a typical size comparable to the
convective cell in the initial evolutionary stage [(a1)–(a2)], it
evolves as time passes to organize the large-scale structure to
have spatial-scale much larger than the convective cell [(a3)–
(a4)]. The surface magnetic structure has a dynamically
important strength comparable to Beq(z) and recurrently appears
in the dynamo-saturated stage [(a5)], implying that it should be

Figure 1. (a) Vertical profiles of the initial density (solid) and temperature (dashed) of the simulation model, and the density profile of the CZ of the standard solar
model (dash–dotted). The normalization units are their surface values. (b) Vertical profiles of áá ññuz

2
h
1 2 for the progenitor (dashed) and dynamo (solid) runs. (c) The

horizontal distributions of the uz at z/dcz = 0.04, 0.23, 0.78 of the progenitor (upper) and dynamo (lower) runs.
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●	基礎方程式：圧縮性MHD方程式【回転系】
●	1層ポリトロープモデル【対流層のみ】	
			アスペクト比：Lx/Lz	=	Ly/Lz		=	4,	Ωはgと反平行
●	無次元パラメータ	:	Pr	=	10,	Pm	=	2,	Ra	=	4×106

-	磁場・・上部境界：開放境界（垂直磁場）条件	
　　　　			下部境界：完全導体

●	ポリトロープ指数：1.49	(super-adiaba7city	δ=10-3)

-	速度場・・上・下とも応力なし境界条件
-	下部境界に一定の	dε/dz			→		対流を駆動

●	境界条件（水平方向は周期境界）：

ロスビー数の違いがダイナモに及ぼす影響
●	パラメータ：回転率（Ω0）

●	密度プロファイルの比較	(計算モデル	vs	太陽内部)

YM&Sano16

密度比	～	700
（太陽だと0.99Rsun位に相当）



(b)	対流層上部 (c)	対流層中部(a)	対流層表面
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③	下降流の収束		→		下降流プルームの形成	
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YM&Sano16
→		回転率を変える.	種磁場を加える.		



Progenitor Model (Ω = 0) (a) Ro = 0.66 (Ω = 0.05) (b) Ro = 0.3 (Ω = 0.1)

(c) Ro = 0.13 (Ω = 0.25) (d) Ro = 0.03 (Ω = 0.5)
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対流構造・ロスビー数の回転率依存性
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(b) Ro = 0.3 (Ω = 0.1)

(c) Ro = 0.13 (Ω = 0.25)

(d) Ro = 0.03 (Ω = 0.5)

回転率(≡	Ω0)の増加
・対流のスケールが回転率の増加にともない減少
・対流速度も回転率の増加にともない減少

Ro ≡ 
2Ω 0d
vrms

d：対流層の厚み

※速度の全成分の	
　rms値でRoは計算

YM&Sano17	in	prep.
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※速度の全成分の	
　rms値でRoは計算

0

0.005

0.01

0.015

0.02

0.025

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

u
z
,r
m
s(
z)

≡
√
⟨⟨
u
2 z
⟩⟩

h

z/d (depth)

対流層底部対流層上部

高Ro 低Ro

YM&Sano17	in	prep.



対流ダイナモのロスビー数依存性①
(a) Ro = 0.09 (Ω = 0.05) (b) Ro = 0.04 (Ω = 0.1)

(c) Ro = 0.015 (Ω = 0.25) (d) Ro = 0.005 (Ω = 0.5)
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Roに依存してダイナモの振る舞いが変わる

低ロスビー数のモデル

高ロスビー数のモデル
-	乱流磁場の成長が支配的
-	磁場を維持できず時間とともに減衰

●

●
-	乱流磁場の成長後,	大局的磁場が形成
-	乱流磁場・大局的磁場ともに維持

Rocrit	~	0.015	-	0.04 YM&Sano17	in	prep.



(a) Ro = 0.09 (τcv = 31)

(d) Ro = 0.005 (τcv = 54)

(b) Ro = 0.04 (τcv = 34)
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Figure 1. (a) Normalized time-averaged mean rotation profile Ω/Ω0 =
Uφ/(Ω0r sin θ ) + 1. (b) Relative kinetic helicity density hrel. (c) Rotation profile
(color contours) and meridional circulation Um = (Ur, U θ , 0) (arrows) near
the equator. From Run B4m.
(A color version of this figure is available in the online journal.)

and p is the pressure. The fluid obeys the ideal gas law with
p = (γ − 1)ρe, where γ = cP/cV = 5/3 is the ratio of
specific heats at constant pressure and volume, respectively, and
e = cVT is the internal energy. The gravitational acceleration
is g = −GM r̂/r2, where G is the gravitational constant,
M is the mass of the star, and r̂ is the unit vector in the
radial direction. We omit the centrifugal force (cf. Käpylä
et al. 2011b). The rate of the strain tensor S is given by
Sij = (1/2)(ui;j + uj ;i) − (1/3)δij∇ · u, where the semicolons
denote covariant differentiation (Mitra et al. 2009).

2.1. Initial and Boundary Conditions

The initial state is isentropic and the hydrostatic temperature
gradient is ∂T/∂r = −g/[cV(γ − 1)(m + 1)], where m = 1.5

Figure 2. Bφ near the surface of the star at r = 0.98 R as a function of latitude
90◦ − θ for Co = 4.7 ((a), Run B3m), 7.6 ((b), B4m), and 14.8 ((c), B5m). The
white dotted line denotes the equator 90◦ − θ = 0.
(A color version of this figure is available in the online journal.)

is the polytropic index. We fix the value of ∂T/∂r on the
lower boundary. The density profile follows from hydrostatic
equilibrium. The heat conduction profile is chosen so that
radiative diffusion is responsible for supplying the energy
flux in the system, with K decreasing more than two orders
of magnitude from bottom to top (Käpylä et al. 2011a). A
weak random small-scale seed magnetic field is taken as initial
condition (see below).

The radial and latitudinal boundaries are taken to be impen-
etrable and stress free; see Equations (14) and (15) of Käpylä
et al. (2011b). For the magnetic field we assume perfect con-
ductors at the lower radial and latitudinal boundaries, and radial
field at the outer radial boundary; see Equations (15)–(17) of
Käpylä et al. (2010). On the latitudinal boundaries we assume
that the thermodynamic quantities have zero first derivatives,
thus suppressing heat fluxes through the boundaries.

On the upper boundary we apply a blackbody condition

σT 4 = −K
∂T

∂r
− χtρT

∂s

∂r
, (5)

2
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Figure 3. (a) Bφ (r, t) in units of the local equipartition field strength at 25◦

latitude for Run B4m shown in Figure 2(b). (b) Blow-up of Figure 2(b) showing
the region −60◦ < 90◦ − θ < 60◦ and 2200 < turmskf < 3200 at r = 0.98 R.
(c) Like Figure 2(b), but at r = 0.85 R and Bφ is normalized by its volume-
averaged rms value at each time to make the early time evolution visible.
(A color version of this figure is available in the online journal.)

where σ is the Stefan–Boltzmann constant. We use a modified
value for σ that takes into account that our Reynolds and
Rayleigh numbers are much smaller than in reality, so K and
therefore the flux are much larger than in the Sun.

2.2. Dimensionless Parameters

We obtain non-dimensional quantities by choosing R =
GM = ρ0 = cP = µ0 = 1, where ρ0 is the initial density at
0.7 R. Our simulations are defined by the energy flux imposed at
the bottom boundary, Fb = −(K∂T/∂r)|r=0.7R , the temperature
at the top boundary, T1 = T (r = R), as well as the values
of Ω0, ν, η, and χtm = χt(rm = 0.85 R). The corresponding
non-dimensional input parameters are the luminosity parameter
L = L0/[ρ0(GM)3/2R1/2], the normalized pressure scale height
at the surface, ξ = [(γ − 1)cVT1]GM/R, the Taylor number
Ta = (2ΩR2/ν)2, the Prandtl number Pr = ν/χtm, the magnetic
Prandtl number Pm = ν/η, and the non-dimensional viscosity
ν̃ = ν/

√
GMR. Other useful diagnostic parameters are the

Reynolds number Re = urms/νkf and the Coriolis number

Figure 4. Top panel: Bφ (black line) and Br (red) at 90◦−θN = 25◦ latitude. The
blue line shows 0.5Br at θ0. Bottom panel: Bφ from θN and θS corresponding
to latitudes ±25◦, respectively.
(A color version of this figure is available in the online journal.)

Co = 2Ω0/urmskf , where urms = ((3/2)⟨u2
r + u2

θ ⟩)1/2 is the
rms velocity. Note that for urms we omit the contribution
from the azimuthal velocity, because its value is dominated
by effects from the differential rotation (Käpylä et al. 2011b).
The Taylor number can also be written as Ta = Co2Re2(kfR)4,
with kfR ≈ 21. Due to the fact that the initial stratification is
isentropic, we quote the (semi-) turbulent Rayleigh number Rat
from the thermally relaxed state of the run,

Rat =
GM(∆r)4

νχtmR2

(
− 1

cP

ds

dr

)

rm

, (6)

where kf = 2π/∆r is an estimate of the wavenumber of the
largest eddies and ∆r = 0.3 R is the thickness of the layer.
The magnetic field is expressed in equipartition field strengths,
Beq(r) = ⟨µ0ρu2⟩1/2

θφ , where the subscripts indicate averaging
over θ and φ with azimuthally averaged mean flows subtracted.

The simulations were performed with the Pencil Code,4
which is a high-order finite difference method for solving the
compressible equations of magnetohydrodynamics.

3. RESULTS

Our primary simulation (Run B4m) is continued from a
thermally relaxed snapshot of a hydrodynamic Run B4 of
Käpylä et al. (2011a) with L = 3.8 × 10−5, ξ = 0.02,
Ta ≈ 1.4 × 1010, ν̃ = 2.9 × 10−5, and Pr = 2.5, resulting
in Re = 36, Co = 7.6, and Rat ≈ 3 × 106. The discussion
of the results refers to this run unless stated otherwise. We also
consider two other runs with Co = 4.7 and Re = 39 (Run B3m),
as well as Co = 14.8 and Re = 31 (Run B5m). The former is
continued from Run B3 of Käpylä et al. (2011a) whereas the
latter is run from the initial conditions stated above. Our seed
magnetic field has an amplitude of ≈10−4 Beq. As a starting
point, we use Pm = 1 and a resolution of 128×256×128 mesh

4 http://code.google.com/p/pencil-code/
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(a) Ro = 0.09 (τcv = 31)

(d) Ro = 0.005 (τcv = 54)

(b) Ro = 0.04 (τcv = 34)

(c) Ro = 0.015 (τcv = 44)
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(a) (c)
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Figure 1. (a) Normalized time-averaged mean rotation profile Ω/Ω0 =
Uφ/(Ω0r sin θ ) + 1. (b) Relative kinetic helicity density hrel. (c) Rotation profile
(color contours) and meridional circulation Um = (Ur, U θ , 0) (arrows) near
the equator. From Run B4m.
(A color version of this figure is available in the online journal.)

and p is the pressure. The fluid obeys the ideal gas law with
p = (γ − 1)ρe, where γ = cP/cV = 5/3 is the ratio of
specific heats at constant pressure and volume, respectively, and
e = cVT is the internal energy. The gravitational acceleration
is g = −GM r̂/r2, where G is the gravitational constant,
M is the mass of the star, and r̂ is the unit vector in the
radial direction. We omit the centrifugal force (cf. Käpylä
et al. 2011b). The rate of the strain tensor S is given by
Sij = (1/2)(ui;j + uj ;i) − (1/3)δij∇ · u, where the semicolons
denote covariant differentiation (Mitra et al. 2009).

2.1. Initial and Boundary Conditions

The initial state is isentropic and the hydrostatic temperature
gradient is ∂T/∂r = −g/[cV(γ − 1)(m + 1)], where m = 1.5

Figure 2. Bφ near the surface of the star at r = 0.98 R as a function of latitude
90◦ − θ for Co = 4.7 ((a), Run B3m), 7.6 ((b), B4m), and 14.8 ((c), B5m). The
white dotted line denotes the equator 90◦ − θ = 0.
(A color version of this figure is available in the online journal.)

is the polytropic index. We fix the value of ∂T/∂r on the
lower boundary. The density profile follows from hydrostatic
equilibrium. The heat conduction profile is chosen so that
radiative diffusion is responsible for supplying the energy
flux in the system, with K decreasing more than two orders
of magnitude from bottom to top (Käpylä et al. 2011a). A
weak random small-scale seed magnetic field is taken as initial
condition (see below).

The radial and latitudinal boundaries are taken to be impen-
etrable and stress free; see Equations (14) and (15) of Käpylä
et al. (2011b). For the magnetic field we assume perfect con-
ductors at the lower radial and latitudinal boundaries, and radial
field at the outer radial boundary; see Equations (15)–(17) of
Käpylä et al. (2010). On the latitudinal boundaries we assume
that the thermodynamic quantities have zero first derivatives,
thus suppressing heat fluxes through the boundaries.

On the upper boundary we apply a blackbody condition

σT 4 = −K
∂T

∂r
− χtρT

∂s

∂r
, (5)
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Figure 3. (a) Bφ (r, t) in units of the local equipartition field strength at 25◦

latitude for Run B4m shown in Figure 2(b). (b) Blow-up of Figure 2(b) showing
the region −60◦ < 90◦ − θ < 60◦ and 2200 < turmskf < 3200 at r = 0.98 R.
(c) Like Figure 2(b), but at r = 0.85 R and Bφ is normalized by its volume-
averaged rms value at each time to make the early time evolution visible.
(A color version of this figure is available in the online journal.)

where σ is the Stefan–Boltzmann constant. We use a modified
value for σ that takes into account that our Reynolds and
Rayleigh numbers are much smaller than in reality, so K and
therefore the flux are much larger than in the Sun.

2.2. Dimensionless Parameters

We obtain non-dimensional quantities by choosing R =
GM = ρ0 = cP = µ0 = 1, where ρ0 is the initial density at
0.7 R. Our simulations are defined by the energy flux imposed at
the bottom boundary, Fb = −(K∂T/∂r)|r=0.7R , the temperature
at the top boundary, T1 = T (r = R), as well as the values
of Ω0, ν, η, and χtm = χt(rm = 0.85 R). The corresponding
non-dimensional input parameters are the luminosity parameter
L = L0/[ρ0(GM)3/2R1/2], the normalized pressure scale height
at the surface, ξ = [(γ − 1)cVT1]GM/R, the Taylor number
Ta = (2ΩR2/ν)2, the Prandtl number Pr = ν/χtm, the magnetic
Prandtl number Pm = ν/η, and the non-dimensional viscosity
ν̃ = ν/

√
GMR. Other useful diagnostic parameters are the

Reynolds number Re = urms/νkf and the Coriolis number

Figure 4. Top panel: Bφ (black line) and Br (red) at 90◦−θN = 25◦ latitude. The
blue line shows 0.5Br at θ0. Bottom panel: Bφ from θN and θS corresponding
to latitudes ±25◦, respectively.
(A color version of this figure is available in the online journal.)

Co = 2Ω0/urmskf , where urms = ((3/2)⟨u2
r + u2

θ ⟩)1/2 is the
rms velocity. Note that for urms we omit the contribution
from the azimuthal velocity, because its value is dominated
by effects from the differential rotation (Käpylä et al. 2011b).
The Taylor number can also be written as Ta = Co2Re2(kfR)4,
with kfR ≈ 21. Due to the fact that the initial stratification is
isentropic, we quote the (semi-) turbulent Rayleigh number Rat
from the thermally relaxed state of the run,

Rat =
GM(∆r)4

νχtmR2

(
− 1

cP

ds

dr

)

rm

, (6)

where kf = 2π/∆r is an estimate of the wavenumber of the
largest eddies and ∆r = 0.3 R is the thickness of the layer.
The magnetic field is expressed in equipartition field strengths,
Beq(r) = ⟨µ0ρu2⟩1/2

θφ , where the subscripts indicate averaging
over θ and φ with azimuthally averaged mean flows subtracted.

The simulations were performed with the Pencil Code,4
which is a high-order finite difference method for solving the
compressible equations of magnetohydrodynamics.

3. RESULTS

Our primary simulation (Run B4m) is continued from a
thermally relaxed snapshot of a hydrodynamic Run B4 of
Käpylä et al. (2011a) with L = 3.8 × 10−5, ξ = 0.02,
Ta ≈ 1.4 × 1010, ν̃ = 2.9 × 10−5, and Pr = 2.5, resulting
in Re = 36, Co = 7.6, and Rat ≈ 3 × 106. The discussion
of the results refers to this run unless stated otherwise. We also
consider two other runs with Co = 4.7 and Re = 39 (Run B3m),
as well as Co = 14.8 and Re = 31 (Run B5m). The former is
continued from Run B3 of Käpylä et al. (2011a) whereas the
latter is run from the initial conditions stated above. Our seed
magnetic field has an amplitude of ≈10−4 Beq. As a starting
point, we use Pm = 1 and a resolution of 128×256×128 mesh

4 http://code.google.com/p/pencil-code/
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対流層表面での磁場の進化
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・垂直磁場の大局構造は確かに存在	(Fourier	filtering)
・進化後期は双極のバンド状構造
・Ro	=	0.015,	0.005のモデルに共通磁気エネルギー	(Bz成分)は箱幅にピーク



なぜダイナモが起こるのか？
・ダイナモは対流層の上部と底部で励起	→	対流層中部でも成長,	全体で維持
・ロスビー数の大きさが鍵（臨界Ro	=	0.015	~	0.04）
・ロスビー数は「乱流α効果」と「乱流磁気拡散」の比： Ro ≡ 

2Ω l
V

α~
ηt k

ダイナモの励起を定量的に理解するために「平均場ダイナモ方程式」を導入

SPONTANEOUS FORMATION OF SURFACE MAGNETIC STRUCTURE FROM
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ABSTRACT

We report the first successful simulation of spontaneous formation of surface magnetic structures from a large-scale
dynamo by strongly stratified thermal convection in Cartesian geometry. The large-scale dynamo observed in our
strongly stratified model has physical properties similar to those in earlier weakly stratified convective dynamo
simulations, indicating that the α2-type mechanism is responsible for the dynamo. In addition to the large-scale
dynamo, we find that large-scale structures of the vertical magnetic field are spontaneously formed in the
convection zone (CZ) surface only in cases with a strongly stratified atmosphere. The organization of the vertical
magnetic field proceeds in the upper CZ within tens of convective turnover time and band-like bipolar structures
recurrently appear in the dynamo-saturated stage. We consider several candidates to be possibly be the origin of the
surface magnetic structure formation, and then suggest the existence of an as-yet-unknown mechanism for the self-
organization of the large-scale magnetic structure, which should be inherent in the strongly stratified convective
atmosphere.

Key words: convection – dynamo – magnetohydrodynamics (MHD) – Sun: magnetic fields – sunspots

1. INTRODUCTION

A longstanding goal of solar interior physics is to self-
consistently reproduce active regions, composed mainly of
sunspots, from magnetic fluxes generated in the solar interior.
We now approach the subject from two different theoretical
perspectives: one perspective focuses on the emergence and
organization processes of the magnetic flux in the uppermost
part of the convection zone (CZ), and the other explores the
flux generation and maintenance processes, i.e., the dynamo
process, operating deeper down.

Several leading-edge numerical studies that have focused on
the uppermost part of the solar CZ have succeeded in
simulating spontaneous formations of concentrated magnetic
structures reminiscent of active regions (e.g., Cheung
et al. 2010; Stein & Nordlund 2012; Rempel & Cheung 2014;
Käpylä et al. 2016). In these studies, the solar surface
convection and its nonlinear interaction with the magnetic
field were simulated in a more or less realistic manner, with the
steep density gradient just below the photosphere, and/or the
radiative transfer with the ionization in Cartesian domains.
However, since some sort of the large-scale seed magnetic field
has been inconsistently assumed to be an initial or boundary
condition, the dynamo mechanism and its connection to the
formation process of the active region were beyond the scope
of these studies.

A growing body of evidence is demonstrating that solar-like
cyclic large-scale magnetic fields are organized in global
spherical-shell convections (e.g., Ghizaru et al. 2010; Käpylä
et al. 2012; Masada et al. 2013; Augustson et al. 2015; Yadav
et al. 2015). Despite some differences in the numerical setup
and method, there is a common outcome for the convective
dynamo in these studies: diffuse magnetic flux extending over
the CZ and/or the tachocline instead of magnetic flux tubes
expected in the standard solar dynamo paradigm (e.g.,
Charbonneau 2010, and the references therein). Although the
flux emergence-like event from distributed magnetic flux has
been occasionally observed in some models (Nelson

et al. 2013; Fan & Fang 2014), its universality or feasibility
in the Sun is still a matter of considerable debate.
There is still a large gap between the dynamo in the interior

and the active region formation at the surface. Our study in this
Letter would be a first step for bridging the gap between them.
By advancing our previous works on weakly stratified MHD
convection (Masada & Sano 2014a, 2014b,
hereafter MS14a, MS14b), we perform a convective dynamo
simulation in a strongly stratified atmosphere resembling the
solar interior in Cartesian geometry. The spontaneous forma-
tion of large-scale magnetic structures in the CZ surface self-
consistently from the large-scale convective dynamo is
reported.

2. NUMERICAL SETUP

A convective dynamo system is solved numerically in a
Cartesian domain. Our model covers only the CZ of depth dcz
(0 � z � dcz), omitting a stably stratified layer below it, where
the x- and y-axes are taken to be horizontal, and the z-axis is
pointing downward. We set the width of the domain to be
W = 4dcz.
We solve the fully compressible MHD equations in the

rotating frame of reference with a constant angular velocity of
W = -W ez0 ,
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Figure 15. Meridional slice plots of (A) αφφ , replotted directly from Figure 9; (B) is the corresponding tensor component reconstructed from Equation (44), using the
temporally and zonally averaged kinetic and magnetic helicity profiles extracted from the simulation and plotted on panels (C) and (D), respectively. The correlation
time τ is computed according to Equation (46) and is set to zero below the core–envelope interface r/R = 0.718, indicated by the dashed circular arc on all panels.
(A color version of this figure is available in the online journal.)

tension tends to oppose any twisting of magnetic field lines
by the small-scale turbulent flow. The mean current helicity in
our simulation is plotted in Figure 15(D), again as a combined
azimuthal and temporal average spanning the full simulation
duration. This magnetic contribution to the α-coefficient is
found to be significantly smaller than its kinetic counterpart,
by a factor of about 10. The strong peaks straddling the base
of the convection zone at mid latitude in both hemispheres are
associated with the strong mean magnetic field building up in
these regions, which, acted upon by the small-scale turbulent
flow, feeds the production of small-scale current helicity.

Figure 15(B) shows the α∗(r, θ ) profile reconstructed accord-
ing to Equation (44). The correlation time within the unsta-
ble layers is estimated in a similar manner as in Brown et al.
(2010), i.e.,

τ (r) = Hρ

u′ , (46)

where Hρ is the density scale height of the background stratifica-
tion and u′ is the rms average of the small-scale flow component,
the averaging being carried out zonally, latitudinally, and tem-
porally over the full time span of the simulation. In the stable
layers, τ is artificially set to zero, since Equation (44) is not
expected to hold there, pertaining as it does to fully developed
turbulence.

With the kinetic helicity about an order of magnitude larger
than the magnetic helicity, the structure of this estimated
α∗(r, θ ) reflects primarily the spatial structure of the kinetic
helicity, except in the immediate vicinity of the core–envelope
interface where the kinetic and magnetic contributions have
comparable magnitudes. While the overall amplitude of this
reconstructed α profile is about a factor of three larger than the
measured αφφ (Figure 15(A)), in terms of the spatial variations
Figures 15(A) and (B) are remarkably similar. Interestingly, the
overall magnitude of the reconstructed α, ∼ 20 m s−1, is quite
comparable to the α reconstructed similarly in Brown et al.
(2010, see their Figure 8) in a simulation rotating at thrice the
solar rate, and sustaining a temporally steady, rather than cyclic,
large-scale magnetic field component.

The limited applicability of Equation (44) to our simulation
notwithstanding, the weak contribution of the specific current
helicity as compared to the kinetic helicity term suggests that
the dynamical impact of the small-scale magnetic component
on the small-scale flow is correspondingly weak. Recall that we
also demonstrated, in Section 3.6, that the α-tensor components
show little or no significant variation with the strength of the
large-scale magnetic field. This would suggest that the α-effect
in our simulation operates in the quasi-linear regime and that
the saturation of the dynamo amplitude must be achieved via a
different mechanism.
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のαの分布も基本的構造は同じ
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time (t) and depth (z).
The MF dynamo described by equation (2) falls into a cat-

egory of α2-type. The MF theory predicts that the α2 mode
can generate large-scale magnetic field with oscillatory na-
ture (e.g., Baryshnikova & Shukurov 1987; Rädler & Bräuer
1987). A key ingredient for the oscillatory mode is the non-
uniformity of the α-effect, which can arise naturally as an out-
come of rotating stratified convection in the stellar interior. In
the rigidly rotating system studied here, the α2 dynamo wave
which propagates only in the depth direction is excited. How-
ever, as shown by Käpylä et al. (2013b), in the global system,
it can travel also in the latitudinal direction because of the
strong antisymmetry of the α-effect across the equator.

The dynamo-generated MF produces a Lorentz force that
will tend to “quench" the turbulent motions and will control
the nonlinear evolution and saturation of the system. Since we
have still no definitive model to describe the magnetic quench-
ing effect (e.g., Rogachevskii & Kleeorin 2001; Blackman &
Brandenburg 2002), we adopt the prototypical models which
are the dynamical α-quenching, algebraic γ- and η-quenching
of the catastrophic-type;

∂α

∂t
= −2ηkk2

c

[
α⟨Bh⟩2

h −η (∇×⟨Bh⟩h) · ⟨Bh⟩h

B2
eq

+ α−αk

ReM

]
,(4)

γ =
γk

1 + ReM⟨Bh⟩2
h/B2

eq
, (5)

η =
ηk

1 + ReM⟨Bh⟩2
h/B2

eq
, (6)

(see e.g., Brandenburg & Subramanian 2005, for the quench-
ing), where ReM = ηk/η0. The dependence of the MF model
on the quenching formula should be discussed in detail in
a subsequent paper, but at least the conclusion of this Let-
ter is independent from the choice of the quenching models.
The characteristic wavenumber kc and the equipartition field
strength Beq are given by kc(z) = 2π/Hd and Beq(z) = ⟨⟨ρuz

2⟩⟩h
in our model, where Hd = −dz/dln⟨⟨ρ⟩⟩h is the density scale
height. Here the subscript “k" refers to the unquenched coef-
ficient which is calculated from DNS results of the saturated
convective turbulence.

In the first order smoothing approximation (FOSA), the un-
quenched coefficients αk, γk and ηk in anisotropic forms are
given by (e.g., Käpylä et al. 2006, 2009b),

αk(z) = −τc[⟨⟨uz∂xuy⟩⟩h + ⟨⟨ux∂yuz⟩⟩h] ≡ −τcHeff , (7)

γk(z) = −τc∂z⟨⟨u2
z ⟩⟩h ≡ −τc∂zu2

rms , (8)

ηk(z) = τc⟨⟨u2
z ⟩⟩h ≡ τcu2

rms , (9)

where τc is the correlation time, Heff is the effective helicity,
and urms is the root-mean-square velocity. The vertical pro-
files of Heff and u2

rms in the reference DNS model are shown
in Figure 1b by solid and dashed lines.

The correlation time should be zero in the top cooling and
bottom stable layers because the convective turbulence is not
fully developed, and thus αk = γk = ηk = 0 there. Assuming
the Strouhal number being unity in the convection zone (St =
τcurmskc = 1), the vertical profile of τc is given by

τc(z) =
1

4urmskc

[
1 + erf

( z − zb

h

)][
1 + erf

( zt − z
h

)]
, (10)

where zi (i = t,b) represents the locations of the boundaries
between the regions with and without the fully-developed tur-
bulence. We define zt and zb as the depth where Heff takes the
maximum and minimum values (see Figure 1b). The transi-
tion width h is an arbitrary parameter and is assumed here as
h = 2∆z with ∆z = 2d/Nz. The uncertainty of h is discussed
later in the next section. Then all the coefficients (τc, Beq, Hd ,
αk, γk, ηk) required for the MF modeling can be computed
from the DNS results.

3.2. Comparison with DNS
For given all the coefficients in equations (2)–(10) from the

reference DNS model, the MF equations can be solved by the
second-order central difference. For the time integration, the
fourth-order Runge-Kutta method is used. We adopt the same
parameters as in the DNS: the calculation domain of 0 ≤ z ≤
2d, the resolution of Nz = 128, and the magnetic diffusivity
providing Pm = 4.

The time-depth diagram of ⟨Bx⟩h in the MF model is shown
in Figure 2b. The time is normalized by the turbulent mag-
netic diffusion time τdiff ≡ 1/[⟨⟨η⟩⟩vk2], where k is the typ-
ical wavenumber of the dynamo wave and is chosen here as
k = π/2d (c.f., Brandenburg et al. 2009). The large-scale field,
which has a quite similar amplitude and spatiotemporal struc-
ture with the DNS, is generated and sustained in the bulk of
the convection zone in the MF model.

Quantitative agreement between the MF model and DNS
can be found in Figure 3, in which the time series of ⟨Bx⟩v and
⟨By⟩v are shown. The orange [cyan] solid line denotes ⟨Bx⟩v
[⟨By⟩v] in the DNS and the red dashed [blue dash-dotted] line
is the MF model. The time of the DNS is rescaled by τdiff
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Spontaneous Formation of Surface Magnetic Structure

from Large-scale Dynamo in Strongly-stratified Convection

Youhei MASADA1, and Takayoshi SANO2

ABSTRACT

We report the first successful simulation of spontaneous formations of surface magnetic struc-
tures from a large-scale dynamo by strongly-stratified convections in Cartesian geometry. The
dynamo-generated large-scale magnetic field, which extends over whole the convection zone, or-
ganizes a quasi-steady structure of the horizontal magnetic flux with the maximum intensity at
the mid-part of the convection zone. Since the strong stratification yields a small density scale-
height in the upper convection zone, the dynamo-maintained magnetic flux becomes unstable to
the magnetic buoyancy instability there. As a result of buoyant emergences of unstable magnetic
loops, the surface magnetic structure is spontaneously formed. The active region rooted in a
relatively-shallow convection zone might be a natural consequence of the large-scale dynamo in
the strongly-stratified convection.

Subject headings: convection – magnetohydrodynamics (MHD) – Sun: magnetism –sunspots
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+	非線形効果：α-quenching

数値計算（MHD） 数値計算（平均場モデル）

ダイナモ励起や臨界Ro,	時空間パターンなど定性的にはダイナモの振る舞いを再現可能

(磁場と磁気ヘリシティが増大するとα効果を抑制)

(c.f.,	Brandenburg		
								&	Subramanian	05)

平均場ダイナモ方程式：

with 
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まとめ
mechanism that does not rely on a shear layer. Existing dynamo simulations for fully convective stars 
succeed in generating magnetic fields, but are unable to predict their behaviour as a function of the rotation 
rate17. However, it seems unlikely that both partly and fully convective stars would have the same rotation–
activity relationship (requiring both their dynamo efficiency and rotational dependence to behave in the same 
way) without their dynamo mechanisms sharing a major feature. 
 
A third possibility is that convection in the cores of fully convective stars could be magnetically 
suppressed27, leading to the existence of a solar-like tachocline, although some studies suggest that 
convection would not be completely halted, only made less efficient28. Furthermore, the field strengths that 
are necessary for such a transition are 107–108 G (refs 28, 29), orders of magnitude larger than the fields 
thought to exist in the solar interior and at levels that simulations suggest are impossible to maintain30. 
 

 

	
Figure	 1.	 Rotation–activity	 relationship	 diagram	 for	 partly	 and	 fully	 convective	 stars.	 Fractional	 X-ray	
luminosity,	LX/Lbol,	plotted	against	the	Rossby	number,	Ro	=	Prot/τ,	for	824	partly	(grey	circles)	and	fully	(red	circles)	
convective	 stars	 from	 the	 most	 recent	 large	 compilation	 of	 stars	 with	 measured	 rotation	 periods	 and	 X-ray	
luminosities7.	 The	 best-	 fitting	 saturated	 (horizontal)	 and	 unsaturated	 (diagonal)	 rotation–activity	 relationships	
from	that	study	are	shown	as	black	dashed	lines.	The	four	slowly	rotating	fully	convective	M	dwarfs	studied	here	are	
shown	 in	 light	 red	 (error	 bars	 indicate	 1	 standard	 deviation).	 The	 uncertainties	 for	 the	 other	 data	 points	 are	 not	
quantified	 but	 will	 be	 comparable	 to	 the	 M	 dwarfs	 for	 the	 Rossby	 number	 and	 approximately	 twice	 as	 large	 for	
LX/Lbol.	
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Figure 5. (a) Latitude-time variation of the mean (azimuthally averaged) toroidal magnetic field at a depth (r = 0.73 Rs ) near the bottom of the CZ. (b) Azimuthally
averaged toroidal magnetic field distribution in the meridional plane at the time marked by the green line in panel (a). (c) A shell slice of the toroidal magnetic field at
a depth (r = 0.73 Rs ) near the bottom of the CZ at the same time marked by the green line in panel (a).
(A color version of this figure is available in the online journal.)

averaged velocity components and only sum up the azimuthally
fluctuating parts of the velocity components. Also shown are
the corresponding magnetic field strength in equipartition with
the peak downflow speed (solid red curve) and the rms speed
(dash–dotted red curve). It can be seen that the equipartition field
strength Beq corresponding to the peak down flow speed reaches
≈63 kG, while Beq corresponding to the rms speed is ∼10 kG
for the deep and mid-convection zone, and decrease to about
5000 G near the top boundary at about r = 0.971 Rs . Following
Käpylä et al. (2012), we compute the following non-dimensional
numbers characterizing the convective flows. The Reynolds
number Re = urms/νkf ranges from about 130 at the bottom to
about 50 at the top, and with a mid-convection zone value of
about 128, where kf = 2π/(ro−ri) and urms = ((3/2)⟨vr

2+vθ
2⟩)

is the rms velocity averaged over each depth, omitting the
contribution from the azimuthal velocity. The Coriolis number
CO = (2Ω/urms,all kf ) = 1.3, where urms,all = ((3/2)⟨vr

2+vθ
2⟩)

with the averaging ⟨⟩ done for the entire domain. We can
compare the values of these non-dimensional numbers with
the corresponding ones in Käpylä et al. (2012): Re = 36
and CO = 7.6. It appears the convective flow in our dynamo
simulation is moderately more turbulent as characterized by the
larger Re, especially in the deeper layers of the CZ. Our Coriolis
number CO is significantly lower, indicating that our convective
dynamo is operating in a significantly less rotationally dominant
regime. If we were to scale their typical rms velocity to be
similar to ours urms,all ≈ 100 m s−1, then their CO would imply
a significantly more rapidly rotating stellar envelope (with the
solar CZ depth) at about five times the solar rotation rate.

Figure 5(a) shows the latitude-time variation of the mean
(azimuthally averaged) toroidal magnetic field at a depth near
the bottom of the CZ. The mean toroidal magnetic field tends
to be of opposite signs for the two hemispheres, and exhibits an
irregular cyclic behavior with oscillations of the field strength on
timescales ranging from about 5 to about 15 yr and undergoes
irregular sign/polarity reversals. The strongest mean toroidal
field is concentrated near the bottom of the CZ (see Figure 5(b)),
peaking at about 7 kG. Figure 5(c) shows a shell-slice of Bφ

at a depth near the bottom of the CZ, at a cycle maximum
phase indicated by the green line in Figure 5(a). It shows that
strong toroidal fields Bφ of a preferred sign (opposite for the
two hemispheres) are concentrated in individual channels or
filaments in each hemisphere, reaching a peak field strength of
about 30 kG, which exceeds the field strength in equipartition
with the local rms convective speed (Beq ≈ 13 kG), but is below
the equipartition field strength corresponding to the peak down
flow speed (Beq ≈ 63 kG). Thus, these strong field filaments
are not passively advected by convective flows, but would be
pinned down by the strong down flows if in their paths.

3.2. Maintenance of the Solar-like Differential Rotation

Figure 6(a) shows the time and azimuthally averaged rotation
rate in the convective envelope self-consistently maintained
in the convective dynamo simulation. It shows a solar-like
differential rotation profile (e.g., Thompson et al. 2003) with
a faster rotation rate at the equator than at the polar region
by about 30% of the mean rotation rate, and more conical
shaped iso-rotation contours in the mid-latitude zone. The

4

variation is seen (Fig. 2A). Then, these features
become weak in the case Medium (Fig. 2B).
When the resolution is increased further, the co-
herent magnetic field and its cycle are recovered
(Fig. 2C). Shown in Table 1 are the turbulent

magnetic energy density B′2/(8p), where B′ ¼
B − hBi, and mean magnetic energy hBi2=ð8pÞ
averaged from 0.715R⊙ to 0.73R⊙, where the
mean magnetic field is concentrated. Whereas
the turbulent magnetic energy (dominant con-

tribution to total magnetic energy) increases
monotonically with increasing the resolution,
themeanmagnetic energyhas a different behavior.
From Low to Medium, the energy decreases by a
factor of 3, and half of themeanmagnetic energy
from the case Low is recovered in the case High.
Our finding can be understood with Fig. 3,

which shows the energy spectra at the base of the
convection zone (r = 0.72R⊙). Whereas in case
Medium, the magnetic energy is always smaller
than the kinetic energy, indicating an inefficient
small-scale dynamo, the small-scale (l > 40, where
l is the spherical harmonic degree) magnetic en-
ergy exceeds the kinetic energy in the case High.
This is an indication of an efficient small-scale
dynamo. The possibility that the strong small-
scale magnetic field is generated by the small-
scale dynamo is supported by fig. S3. From the
calculation without rotation (only small-scale dy-
namo action), we find a ratio (Emag/Ekin) compa-
rable with that of the case High. From this, we
conclude that the small-scale magnetic field in
the case High is mostly generated by the small-
scale dynamo.
The velocity amplitude in the small scale is

significantly suppressed by the small-scale mag-
netic field. In the case Medium, the small-scale
flow leads to destruction of the global magnetic
field. This is confirmed with an additional calcu-
lation for the caseMediumwith the same explicit
viscosity as the case Low, but no explicit magnet-
ic diffusivity (fig. S4). That calculation also shows
a similar level of coherent global-scale magnetic
field as the case Low. In this control experiment,
the large viscosity suppresses the small-scale flow,
which tends to destruct the global-scale magnetic
field, whereas in the case High, the suppression is
a consequence of feedback from the strong small-
scale magnetic field. Previous studies suggested
that the nonlinearity of the magnetic field can
suppress the exponential growth of the small-
scale dynamo and set a finite amplitude of the
magnetic field, which may be essential in allow-
ing the reproduction of the large-scale magnetic
field (8, 9). Because our calculation is nonlinear,
this effect is included. Our new finding here is
that the suppression of the small-scale flow sup-
ports the construction of large-scale magnetic
field, and small-scale dynamo is still efficient. Be-
cause the case High-S continues only a short time
owing to the restriction of our computer resource,
we cannot conclude that the large-scale magnetic
field in the case High-S is self-consistently gen-
erated by the large-scale dynamo. However, we
can check the numerical convergence and the
tendency of the small-scale dynamo in the currently
unreachable high-resolution calculation. The kinetic
andmagnetic energy spectra of the cases High and
High-S are shown in fig. S5. This figure shows
that when we adopt higher resolution, the small-
scale velocity is more reduced; our obtained effect
is more promoted in higher resolution.
Our result demonstrates that a global-scale co-

herentmagnetic field canbemaintained evenwith
small viscosity and magnetic diffusivity, provided
that the Lorentz-force feedback from a small-scale
magnetic field is strong enough. We roughly
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Fig. 2. Toroidal magnetic field at the base of the convection zone. (A to C) Zonally averaged toroidal
magnetic fieldhBfi at r = 0.72R⊙.The result from the cases Low, Medium, and High are shown in (A), (B),
and (C), respectively.

Fig. 3. Spectra of the cases Medium and High.
The kinetic (solid) and magnetic (dotted) energy
spectra at r = 0.72R⊙.The red line shows the result
from the case Medium. The blue and black lines
show the result from the cases High without mag-
netic field (hydrodynamic) and High with magnetic
field, respectively. The averaged period is the same
as Table 1, from 5000 to 12,500 days.

RESEARCH | REPORTS
・観測的にも理論的にも恒星	
　のダイナモの鍵はロスビー数 Ro ≡ α

ηt k

・励起の臨界値は	Ro	=	0.015	~	0.04（星の内部の平均）
-	乱流α効果はΩにそれほど依存しない
-	乱流磁気拡はΩの増大とともに現象

・回転が遅い場合にダイナモが減衰する理由は？


