MHD2017 磁気流体プラズマで探る 高エネルギー天体現象研究会 2017. 8. 30. JAMSTEC東京事務所

太陽プラズマの磁気流体数値計算

横山央明 東京大学地惑

共同研究 東京大学横山研の大学院生ほか 特に飯島陽久(名古屋大学)

目次

わたしと松元さん 太陽プラズマの観測 太陽プラズマに関連するシミュレーション: 松元さんたちの仕事と私たちの仕事 捻れた磁場による太陽彩層ジェットのシミュレーション 飯島陽久(2016 博士論文)、lijima & Yokoyama (2017)

わたしと松元さん

- 最初の出会い 1992年?月
 - ✓ 松元さん・柴田先生・横山の3人で核融合研(当時、名古屋大キャンパス内)の大型計算機利用に出かけた。当時D1で天文業界に入門したばかりの私は、松元さんの研究への、疲れを知らない姿勢をみてひるむ。
 - ✓ 最初に研究に使ったコードは、松元さんが書いたもの(改良Lax-Wendroff+Lapidus粘性)。
- 共著論文 2本
 - ✓ Shibata et al. (1994) 太陽コロナジェットの観測(!)
 - ✓ Tanuma et al. (1999) 銀河磁気リコネクションのシミュレーション

わたしと松元さん

- 2000-2002年度 JST「宇宙シミュレーション・ネットラボラトリーシステムの開発」
 - ✓ CANS開発と数値計算学校開催。いろいろ勉強になりました。当時は、「シミュレーション研究を する若い人がいなくなった」と話していましたが、このプロジェクトで盛り返したのではないでしょ うか。CANSはその後、CANS+やpCANSという形で花開きました。オリジナル版は、いまも細々と 改良を続けています。
- 科研費に研究分担者/連携研究者として参加。
 - ✓ 2004-2005、2008-2010、2011-2013年度
 - ✓ 2016-2018年度基盤B「巨大ブラックホール降着流におけるX線放射領域の形成と時間変動機構の解明」
 - ✓ できるだけお役に立てるようがんばります。

(千葉大学」ST宇宙ネットラボウェブページより)

JST計算科学プロジェクト天体シミュレーショングループ会議 花山 2001年11月

「学振日英共同研究」研究会花山天文台 2004年7月

太陽プラズマの観測

1992/01/12

(ひのでSOT、岡本丈典博士提供 JAXA、NAOJ)

(ひのでSOT、岡本丈典博士提供 JAXA、NAOJ)

(NASA SDO/AIA)

太陽プラズマに関連するシミュレーション 松元さんたちの仕事と 私たちの仕事

磁束浮上と活動領域形成

Parker (1955)

Matsumoto+(1993)

,10 Y

5

15

20

15 N

Matsumoto+(1998)

プロミネンス(熱い大気中の冷たいプラズマ雲)形成

Peng & Matsumoto (2017)

恒星・太陽でおこるさまざまな磁場・プラズマ相互作用

3D MHD simulations of chromospheric jets launched by twisted magnetic field lines

Haruhisa lijima *Nagoya University* Takaaki Yokoyama

The University of Tokyo

based on

Iijima, H., 2016, PhD thesis, UTokyo Iijima & TY, 2015, ApJL, 812, L30 Iijima & TY, 2017, ApJ, submitted

Chromospheric jets

- dynamic fibrils in active regions (length ~ 3 Mm)
- spicules in quiet regions and coronal holes (length ~ 5–15 Mm)

One of the basic elements of the chromosphere.

For generation of the jets, involved processes

- MHD shocks and waves: mode conversion, nonlinear amplification amplification under strong stratification high β -> very low β
- Radiation
- Partial ionization

Shock transition-region interaction (Hollweg, 1982) (a) (b) Transition region (Contact discontinuity) . M shock Shock front Time (3) V₃ TR TIME TR 3 1SEC 12.00 RATUR Mch 4 shock (2)2 Temperature Vup 3.60 23.60 43.60 63.60 83.60 103.60 123.60 Height perturbation $V_{\rm iet} = V_3 \propto V_{\rm up} = V_{\rm shock}$ 1D hydrodynamic simulation (Suematsu et al., 1982)

Shock formation -> Shock-TR interaction -> jets

Previously proposed driving mechanisms (via shock evoking)

Acoustic wave model

Sound wave

- -> (amplification)
- -> Shock wave

Reconnection model:

Basically, the background magnetic field is given and fixed.

Open issues for jet generation

Which mechanism is more dominant? Need to solve the energy input processes self-consistently.

Radiation MHD (RMHD) models

Martinez-Sykora et al. (2017, Science)

By the radiation MHD approach, the energy input at the photosphere and the non-linear interaction with the background magnetic fields are selfconsistently treated.

Our approach

- We numerically solve the RMHD equations in multi-dimension (2D & 3D) from the upper convection zone to the lower corona.
- The simulation self-consistently includes the energy input, originated from the convection, to the upper layer and the non-linear interaction with magnetic field.
- This allows us to investigate the formation and dynamics of chromospheric jets more quantitatively.

We developed a new code, RAMENS.

RAMENS

RAdiation Magnetohydrodynamics Extensive Numerical Solver

Magnetohydrodynamics

New high resolution CT scheme <u>Fifth-order</u> WENO-Z reconstruction Third-order SSP Runge-Kutta method

Radiative Energy Transfer

Non-local RT with <u>Short Characteristic</u> method OPAL Rosseland mean Opacity Effectively optically thin radiative loss

Spitzer thermal conduction

Flux limiter for preserving monotonicity Second-order <u>Super TimeStepping</u> method Second-order operator splitting

Equation of State

<u>LTE</u> with hydrogen molecule formation 6 most abundant species Interpolation from numerical table

2D simulation

2D simulation

Statistical properties of the acoustically driven jets are in good agreement with those of the Bifrost simulations (Heggland+ 2011).

3D simulations setup

Numerical domain

- Domain size: 9 x 9 x 16 Mm³
 from the upper convection zone
 to the lower corona
- Grid size: 42 x 42 x 32 km³

Initial condition

 Impose uniform vertical magnetic field of
 10 G on a sufficiently evolved nonmagnetized convective atmosphere.

Boundary condition

- Top: Open for flow, conductive flux to maintain hot (1 MK) corona
 Bottom: Open for flow, convective flux through the bottom boundary
- Horizontal: periodic

Morphology | Pseudo-emission

Succeeded to reproduce jets with 6-8 Mm height.

A very tall jet with 10 Mm height is also generated

For visualization, we calculate the optically thin emission with the contribution function G(T) that mimic the chromospheric line emission.

time = 408.6 min

time = 408.6 min

These parameters are consistent with the observations of spicules in quiet regions.

Temporal evolution along the tall jet

Vortex and magnetic concentration at the root of the jet in the photosphere

Small-scale vortex is generated at the boundary of convective cells.

Vertical magnetic field is also gathered in the cell boundary by the horizontal flow.

Vortex at the root of the tall jet in the chromosphere

10

9

At Z=1Mm

In the chromosphere, it is also found a vortex that persists during the emergence phase of the jet.

The signs of rot(V)_z and rot(B)_z can be interpreted as the upward torsional Alfven wave.

eye

Ζ

(a) T [kK]

6

Twist and ejection of the jet

Acceleration of chromospheric plasma

Vertical forces on (Y, Z)-slice at X = 3 Mm

New generation mechanism of chromospheric jet

- Highly twisted magnetic field structure is generated by the strong vortex below.
- (2) Rotating motion of twisted magnetic field lift up the dense chromospheric material to the upper layer.
- (3) The top of the magnetically lifted plasma hits the transition region and elongates chromospheric plasma further upward.

Summary

We presented a three-dimensional simulation that successfully reproduces tall <u>chromospheric jets</u> above the strong photospheric magnetic field.

We find that these jets are <u>driven magnetically</u>, relating to the highly <u>twisted chromospheric magnetic field</u> <u>lines.</u>

The produced jets form a cluster with the diameter of several Mm with finer strands, which is consistent with the <u>multi-</u> <u>threaded nature of spicules.</u>

Torsional motion is an important candidate as a driver of chromospheric jets!

