破気流体プラズマ乱流中の

渦構造とダイナミクス

加藤成晃 戎崎俊一 (理研)

Vincent van Gogh's *The Starry Night* (1889) the view from the window of his asylum room at Saint-Rémy-de-Proyence MHD 2017: "磁気流体プラズマ乱流中の渦の構造とダイナミクス"加藤成晃

1998年

2003年

MHD 2017: "磁気流体プラズマ乱流中の渦の構造とダイナミクス"加藤成晃

Karman vortex

CEReS NICT JMA HIMAWARI Visualization Team on YouTube

Tropical cyclone (Hurricane, Typhoon)

https://en.wikipedia.org/wiki/Tropical_cyclone

Wingtip vortex

https://en.wikipedia.org/wiki/Wingtip_vortices

太陽"磁気"トルネード

Ca II 854.2 nm -CRISP@SST W (Wedemeyer-Böhm & Rouppe van der Voort 2009)

Wedemeyer-Böhm et al. 2012 009)

Solar Chromosphere Spicules = Dynamical fibrils

National Astronomical

Observatory of Japan

Figure 1. Sketch of the granulation–supergranulation–spicule complex in cross section. A, Flow lines of a supergranulation cell. B, Photospheric granules. C, Wave motions. D, Large-scale chromospheric flow field seen in H α . E, [Magnetic] lines of force, pictured as uniform in the corona but concentrated at the boundaries of the supergranules in the photosphere and chromosphere. F, Base of a spicule 'bush' or 'rosette', visible as a region of enhanced emission in the H α and K-line cores. G, Spicules. [...] The distance between the bushes is 30 000 km. Reproduced with permission from Noyes [15], including this caption.

Rutten 2012

Hinode/Ca II H BFI movie (courtesy by Mats Carlsson)

Magnetic flux tube as magnetic portal

VORTEX

How to find a vortex?

6

2

-2

-6

-10

Streamlines

 $D_0 = 2000 \text{ km}$

a shear flow

y [Mm]

y [Mm]

500

-500

500

-500

(e)

-500

- Vorticity magnitude
- Local pressure minimum vorticity

500

x [Mm]

YK & Wedemeyer 2017

科学研究咒制助金 衝学術道域研究 (A:冥王托生命学、領域發号:2605)

VORTEX

Recent measures of a vortex

by an imaginary part of eigenvalue of the velocity gradient tensor "Swirling Strength"= 渦巻度 (Moll et al. 2011)

Consider the velocity gradient tensor, \mathcal{D}_{ij}

$$\mathcal{D}_{ij} = \frac{\partial v_i}{\partial x_j} \tag{2}$$

If λ are the eigenvalues of \mathcal{D}_{ij} , then

$$\left[\mathcal{D}_{ij} - \lambda I\right]e = 0\tag{3}$$

where e is the eigenvector.

The eigenvalues can be determined by solving the characteristic equation

$$\det\left[\mathcal{D}_{ij} - \lambda I\right] = 0 \tag{4}$$

which, for a velocity flow in two-dimensional space $v = (v_x, v_y)$, can be written as

$$\lambda^2 + P\lambda + Q = 0 \tag{5}$$

where $P = -tr(\mathcal{D}_{ij})$ and $Q = det(\mathcal{D}_{ij})$. Equation (5) has the following canonical solutions:

$$\lambda = \frac{-P \pm \sqrt{P^2 - 4Q}}{2}.\tag{6}$$

Velocity Field at the T

convection zone

.05

Testing a new detection algorithm YK & Wedemeyer 2017 A&A

- A new 3D numerical simulation by using CO⁵BOLD
 - CO⁵BOLD (Freytag et al. 2008)
 - Fortran90+OpenMP
 - MHD: HLLC solver with the Janhunen source terms.
 - Long-characteristic Radiation Transfer
 - Equations of State assuming LTE
 - Initial model (similar to Wedemeyer-Böhm et al. 2012, Nature)
 - IB₀I = 50G (strictly vertical)
 - Horizontal extent: 8.0 Mm x 8.0 Mm (11" x 11")
 - Vertical extent: -2.4 Mm to +2.4 Mm
 - $\Delta x=28$ km in horizontal direction (286³ meshes)

The velocity field at z=1 Mm is used as an input for testing the detection algorithm

V**⑥**RTEX

渦巻度と渦度の比較

YK & Wedemeyer 2017 A&A

渦巻度と磁場強度の位置相関

YK & Wedemeyer 2017 A&A

上学研究所

Figure 1. Sketch of the granulation–supergranulation–spicule complex in cross section. A, Flow lines of a supergranulation cell. B, Photospheric granules. C, Wave motions. D, Large-scale chromospheric flow field seen in H α . E, [Magnetic] lines of force, pictured as uniform in the corona but concentrated at the boundaries of the supergranules in the photosphere and chromosphere. F, Base of a spicule 'bush' or 'rosette', visible as a region of enhanced emission in the H α and K-line cores. G, Spicules. [...] The distance between the bushes is 30 000 km. Reproduced with permission from Noyes [15], including this caption.

Rutten 2012

太陽観測と輻射磁気流体モデルの比較

VORTEX

YK & Wedemeyer 2017 A&A

11/15

原始惑星系円盤の渦構造と惑星形成

http://www.hadean.jp/report/全地球史アトラス動画公開.html

Toward Simulation of Protoplanetary Disk

Magnetohydrodynamic Simulation Code

CANS+: Assessments and Applications

Yosuke Matsumoto^{1,2}, Yuta Asahina³, Yuki Kudoh¹, Tomohisa Kawashima^{3,4}, Jin Matsumoto⁵, Hiroyuki R. Takahashi³, Takashi Minoshima⁶, Seiji Zenitani⁴, Takahiro Miyoshi⁷, and Ryoji Matsumoto¹

Revisiting simulations of magnetic tower jet

MHD 2017: "磁気流体プラズマ乱流中の渦の構造とダイナミクス"加藤成晃

降着円盤の渦巻度構造

まとめ

- ・ 渦構造を同定する物理量:渦巻度(速度勾配テンソルの 固有値の虚部成分)
- 太陽コロナ加熱の主犯とみられる太陽トルネードはまだ 観測では見つかり難い小さい構造のモノが沢山存在する
- 降着円盤の渦巻度分布は乱流粘性(~a粘性の起源)と相関するかどうか?【今後の研究】

