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Abstract. A three-dimensional (3-D) high-resolution magnetohydrodynamic (MHD)
simulation scheme is developed on unstructured grid systems to solve the complex-
system problems in space science and space weather in which numerical difficulties
arise from inhomogeneity due to strong background potential fields, inclusion of multi-
species ions, and formations of shocks and discontinuities. The ideal MHD equations
are extended to the 9-component MHD equations for multi-component ions and mod-
ified so as to avoid a direct inclusion of background potential field in dependent vari-
ables through the use of new variables. The numerical scheme adopts the finite volume
method (FVM) with an upwinding numerical flux based on the linearized Riemann
solver. Upwindings on unstructured grid systems are realized from the fact that the
MHD equations are symmetric with respect to the rotation of the space. Despite the
modifications of the equation system, the eigenvectors in the mode-synthesis matrix
necessary for the evaluation of the upwinding numerical flux can still be written analyt-
ically. To get a higher order of accuracy, the upwinding flux is extended to the third-
order total variation diminishing (TVD) numerical flux in the calculation of FVM,
through the monotonic upstream scheme for conservation laws (MUSCL) approach
and Van Leer’s differentiable limiter. Three numerical examples are given in order to
show the efficiency of the above scheme.

1 Introduction

Recently, the magnetohydrodynamic (MHD) simulations are widely applied to
many problems in space science with a great success [1] [2] [3] [4] [5] [6] [7] [8] [9]
[10] [11] [12]. A rapid development of supercomputers in computational speed
and memory size gives a conviction for further developments in this fruitful area.
In these studies, the developments of supercomputers and numerical schemes
are like the two wheels of a cart. In order to apply the MHD simulations to the
problems having more complex configurations, further improvements of numer-
ical schemes are also unavoidable. In this paper, we develop a numerical MHD
scheme that enables an exact treatment of multi-scale space plasma including
multi-component ions and strong background potential field, with an excellent
capturing of shocks and discontinuities.

In the space science, we must always study the complex systems which are
controlled by the coupling processes between different regions having quite differ-
ent characteristics. Auroral physics is a typical example of this kind of problem
[3] [5]. The main process controlling this problem is the coupling effects that
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occur between the magnetosphere and the ionosphere. The characteristic length
and time scales of these two regions are vastly different. If numerical MHD
simulations are applied to these problems, then it becomes necessary to assign
different grid point densities to each region, in order to facilitate the simultane-
ous treatment of the different regions. Therefore, it is unavoidable to adopt an
unstructured grid system. The ordinary finite difference method (FDM) which is
widely used to solve differential equations numerically is no longer applicable on
an unstructured grid system and so here we consider the finite volume method
(FVM) based on the flux conservation law [13].

High-speed flowing plasma that is frequently treated in space science tends
to form shocks and discontinuities. The use of standard numerical schemes of
second-order accuracy (e.g. the Lax-Wendroff method) generates spurious os-
cillations at high gradients. Therefore, there is a need to use more advanced
schemes that can adequately represent these shocks and discontinuities. An out-
standing approach is to evaluate numerical flux in the FVM from an upwinding
method based on the linearized Riemann solver [14] [15] [16]. To get a higher or-
der of accuracy, the upwinding scheme for numerical flux is extended to the total
variation diminishing (TVD) scheme. Among many TVD schemes, a third-order
TVD scheme based on the monotonic upstream scheme for conservation laws
(MUSCL) approach is considered in this paper [17] [18]. With this numerical
flux, excellent shock-capturing is enabled along with stable and highly-accurate
computations. The eigenvalues and eigenvectors of the MHD flux Jacobian ma-
trix necessary for the upwinding calculations are derived from the well-known
Alfven, fast and slow velocities [14]. The calculation of eigenvectors is done with
special care when wave propagations become parallel or perpendicular to the am-
bient magnetic field, because degenerations of eigenvalues occur in these cases
[14] [19].

Another problem in space science is that many planets and stars treated in
the complex-system simulation have a strong dipole magnetic field generated
in their interior regions. In the case of the earth, the magnitude of the dipole
magnetic field is about 30000 nT in the ionospheric region near the Earth, while
it diminishes rapidly in the magnetosphere to about 10 nT. Therefore, the mag-
nitude of the intrinsic magnetic field varies over a wide range in the whole treat-
ing region, in the problem of magnetosphere-ionosphere (M-I) couplings. On the
other hand, the variable components of magnetic field, which are calculated from
the MHD equations, exhibit a similar magnitude over the whole region. As a re-
sult, the ratio of variable to intrinsic components of the magnetic field becomes
extremely small in the ionospheric region. These situations give a difficulty in the
numerical study of the coupling process between two different regions. Especially,
severe difficulties appear in the energy equation. However, this difficulty due to
the wide range in the ratio of variable to internal magnetic fields can be avoided
from the fact that intrinsic magnetic field includes only potential components.
Thus, it becomes important to construct the MHD calculations suppressing the
direct inclusion of the intrinsic component of the magnetic field, as dependent
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variables [3] [19]. In this paper, therefore, a modified equation system is used to
cope with such a problem, changing dependent variables.

In order to apply the MHD simulation to more complicated problems in space
science, an additional improvements is imposed on the original MHD equations.
Since space plasma does not always consist of single ion specie, sometimes we
must treat the plasma that includes multi-component ions with the source and
sink [9]. The ordinary 8-component MHD equations can be extended to the
9-component MHD equations for 2-component plasma.

It is shown in this paper that the equation system with the above modifi-
cations can still be written in the conservation form and can also be treated
numerically through the FVM with the upwinding TVD flux. The eigenvalues
and eigenvectors necessary to construct a TVD scheme are calculated for the 9-
component MHD equations with modified variables. Construction of the scheme
is seen in sections 2, 3, 4, and 5. In section 6, a brief comment is given about the
suitability of the present scheme for parallel computation. To show the feasibility
of the scheme, three numerical examples are shown in sections 7, 8, and 9. The
first example in section 7 shows an excellent ability of present scheme for the
capturing of shocks and discontinuities. The second example in section 8 demon-
strates the applicability of the present scheme to multi-component plasma. The
last example in section 9 adopts the present scheme to the space weather problem
that includes a potential magnetic field, and shows the capability of low-noise
calculation even in the low-/ region.

2 TVD schemes for hyperbolic equations

The history of the development of numerical schemes for hyperbolic conservation
law is long and rich [20]. The idea that stable computation can be accomplished
through an approximate dissipation term was used in early schemes. The ad-
vection equation, the most simple hyperbolic equation, can be written in a one
dimensional coordinate system (z, t) as

ou ou
E + % =0. (1)

Where C is an advection speed. Let ul' be the numerical solution of (1) at
x = iAx and t = n/At. Then, the explicit time integration of this equation is

n n  _ ,n no_ n n
Ui _ _oMien T Uiy duiy, — 2w +ui,

utt —
i T 2
At 2Ax 2 At @)

The stability condition for equation (2) is 1 > d > k%, with k = |C|At/Ax.
Friedrichs-Lax, Godunov, and Lax-Wendroff schemes are obtained automatically
by selecting d = 1,d = k = |CAt/Ax|, and d = k? = (CAt/Azx)?, respectively.
Out of these schemes only the Lax-Wendroff scheme has the second order accu-
racy.

Modern shock-capturing schemes add only enough dissipation in small lo-
calized regions to eliminate numerical oscillations. These schemes enforce some
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constraint on the problem, usually that the solutions be TVD. The Godunov
scheme can be modified to

’U‘?Jrl —uj = Cijrl/z (U?Jrl —uy') — Citl/z (ui —uiy), (3)
with
0;1/2 = (|C| - C)At/2Aar:,C’i+_1/2 = (|C|+ C)At/2Az. 4)
These coefficients satisfy the condition
0< Gy 0y, <1L0<Ch, 0,04, (5)

and the total variation at step n + 1 under this condition is

TV (u™th) = Z|ui+1 + C;B/Z(Ui+2 — Ujp1) — C;l/Z(Ui+1 —u;)

—Uiyq — Ci11/2 (wig1 — ug) + Citl/z(“i —ui_1)|

<Y Criaplttire —uipa]

+> (1=Cfy = Crpy ) lwis — wil

+ZC’i+_1/2|ui — uj_1]

= iy — i (6)

Thus, the TVD is satisfied for the Godunov scheme. This sccheme is a first-order
upwind TVD scheme.
In order to obtain a higher-order TVD scheme, we write equation (2) in the

flux formula
urt yn Fn Fn

i i+1/2 7 ti-1/2
= - 7
At Az ’ (7)
then the Godunov and Lax-Wendroff fluxes in the case of C' > 0 are
Fi(J;rl/Z = Cuy, (8)
and
Fly s = Cui+ C/2:(1 = k) (wig1 — ), 9)

respectively. Equation (8) shows the fact that the Godunov scheme is an upwind
scheme. By combining Godunov and Lax-Wendroff fluxes as

Fij10 = (1- Bi+1/2)Fﬁ1/2 + Bi+1/2FiL+1/2, (10)
one can obtain
G L KB + Sk P (11)
up o —ul 2 2T ri

with
ri = (wi —ui-1)/(Wiv1 — wi). (12)



Finite Volume TVD Scheme 5

In order for the scheme to be TVD, the left hand side of equation (11) must
be between 0 and 1 and the resulting sufficient condition obtained after some
simple algebra is the following,

2 Bit1/2 2
—— < -2<B;_qjp——F <2< —— 1
A < < Db; 1/2 " <2< 1% ( 3)
which reduces to
0< Bi+1/27 Bi+1/2/7"i < 2. (14)

Commonly used limiters which give the constraint for the TVD scheme satisfy
this condition.
For a coupled nonlinear equation system

Oou 0f(u of

ot ox Ou
the Riemann problem is solved to evaluate the upwind flux. From the flux Jaco-
bian matrix A, its eigenvalues Ay, and eigenvectors ry, u;+1 —u; can be expanded
as

Wi —u; =Y Cyry, Cp =1y A, Ay jory, = Mgy, (16)
then, the upwind flux can be evaluated as
Fi+1/2 = f(“fﬂm) = f(u; + Zi(]krk) = f(u;) + Azickrk
= f(lli) + Z_Akark = fi/2 + (fi+1 - ZAkark)/Q + Z_/\kark
+ -
= (fl + fi+1)/2 — (Z AeCrrp — Z )\kaI‘k)/Q
= (£ +£i11)/2 = O_|\lCrry) /2
=(f; +f,1)/2 — (RIA|R"*Au)/2. (17)

The accuracy of the scheme increases by considering the interpolationof depen-
dent variables. An example is the MUSCL interpolation in which i and j are
replaced by L and R as

up = u; + 8 {(1—si/3)(wi —ui—1) + (1 +5si/3)(wis1 —wi) }/4, (18)

up = i1 —Sip{(L+sip1/3) (Wi — i) + (1= sip1/3) (Wig2 —1iy1)} /4, (19)
where s; is a limiter at the grid point .

Assuming first-order accuracy in implicit terms, we can also obtain an im-
plicit MUSCL scheme as

Az n 8Fi+1/2 n 8Fi+1/2 n
EAlli +1 + mAuiiﬁl + TuzAuZ +1
OF;_ OF;_
et - G )
= _(F?+1/2 - F?—1/2)> (20)
n+1 — n+1 n

with a notation Au u’™ —u?.

i i 7
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3 Finite volume TVD scheme for 9-component MHD
equations

In space plasma simulation, sometimes we must treat multiple plasma compo-
nents. The ideal MHD equations can be extended to the 9-component MHD
equations that treat 2-component plasma. The nondimensional conservation-
law form for these equations can be written in the Cartesian coordinate system
(:E)y’Z)t) as

Ou OF(u) 0G(u) O0H(u)

— + + +

ot ox oy 0z

where the dependent variables are u = (p,m,B,U,p>)?" and F,G,H, and S
are flux functions in the z, y, z directions and source terms. p, m, B and U are
the density, momentum, magnetic field and energy density. Where p = p; + po
with p; and ps being the densities of first and second plasma components. Using
Gauss’s law, the integration form of equation (21) can be written as

=8, (21)

%/udv + /(an + Gny +Hn,)ds = /de, (22)

where dv and ds are the volume and surface element of the control volume and
n is a unit vector normal to the surface of the control volume.
Let us define a matrix T which rotates the z axis to the direction of n

1
T,
T = T. |, (23)
1
1
with
Ng Ny N
Tl = |l12 tly 1, ) (24)
t2x t2y t2z
then equation (22) is expressed as
o .
5 udv+ [ T"T(Fn, + Gny +Hn.)ds = | Sdv, (25)

where t; and t, are unit vectors tangent to the surface of the control volume
and orthogonal to each other. Since the form of the MHD equations must be
unchanged for the rotation of the coordinate system, the relation

T(F(u)n, + G(u)n, + H(u)n;) = F(Tu) = F(u,) (26)

must hold [15] [16] [19]. Then one can obtain from equation (25)

%/udv+/T*1F(un)ds - /de. (27)
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Introducing new dependent variables w; = (p,m,B1, Ui, p2)T = (p,my, my,m.,
By — By, By—Boy, B.—Bo.,U—(B1-By)/8—-B3/(28), p2)T, with the conditions
0By /0t = rotBy = divBy, then the equation for u; can be written in the
conservaton-law form as

%/uldv—k/T_lF(um,BOn)ds = /de, (28)

with w1, = Tuy, m, = Tim = (my, ms, me2)?, B, = T1B = (B, Bu1, Bi2) 7,
Bi, = TiBy = (Bin, Bis1, Bi2)", and By, = T1Bg = (Boy, Bot1, Bot2)” . The
flux function in the normalized form is written

- My, 1
2 By
% — %Btan + %BOtIBOn
M2 _ %Btan + %BOQBOH
0
m m
=2 By — =14 B,
F = @Bﬂ - m§2 By ' 2
B2 B
2o (Ur + 55 + P) — &5

X (22 By, + 8By + U Bi2)

P
+Bb“ (B2 By — L By,,)
BOn

'z By,,)

P
B n
+=42(Ba By, — 1
L 14 .

2

p

In the solar wind-magnetosphere-ionosphere (S-M-I) interaction problem, a dipole
field will be adopted as By. In the expression of (29), the By terms are added to
the second, third, fourth, and last components of F, considering rotBgxBg = 0
and mxB-rotBg = 0. The variable component of energy density U, density p,
momentum m, and the variable components of magnetic field By are related to
pressure P by the equation
m?  B?
P= (=1t -5 - 5h) (30)

Constants in these equations are 3 and v, with 3 = upoRTy/B3y,~ the poly-
tropic index, u the magnetic permeability, R the gas constant, pp the normaliza-
tion density, Boo the normalization field, and Tj the normalization temperature.
Momentum m and time ¢ are normalized by po(RTp)'/? and Lg/(RTp)"/?, with
Ly normalization length.

From equation (28), a discrete formulation of the MHD equations in the FVM
style is written for the grid point ¢ in the form

0 -
Vit ZjTileij(ulni’7u1ni7uinja uinjr, Bonij)Sij = SVi,  (31)

where j denotes the grid points neighboring the grid point 4, V; denotes the
volume of the control volume cell which includes the grid point i, T;; is the
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rotation matrix at the interfacing surface between ¢ and j, S;; is the surface area
of the 4 and j interface, Wipni, Uini, Uinj, and uy,j are wyy,ui;, wyj, and ugj
rotated by T;;, and Boy;; is Bo, at the i and j interface. Adopting equation
(17), the first-order upwind numerical flux F,; for equation (31) is given as

1 _
F,= §[F(u1nj; Bonij) + F(uini, Bonij) — Rij | Ayj | Rijl(ulnj — )] (32)
Here, the mode synthesis matrix R;; and the eigenvalue matrix A;; are calcu-
lated from the following diagonalization process:

AR = Rij Ay, (33)
OF
A= 6u—ln(llmij,Bomj), (34)

with A;; the flux Jacobian matrix of F at the ¢ and j interface, and uy,i; a
symmetric average of ui,; and ui,;. As seen from equation (33), the mode
synthesis matrix consists of the right eigenvectors of the flux Jacobian matrix
rijk, and the diagonal matrix A;; consists of eigenvalues A;jx, k = 1~9.

To get a higher order of accuracy, the MUSCL approach is used changing ¢
and j in equation (32) to L and R, suffixes which indicate variables just on the
negative and positive sides of the interface [17]. Adopting equations (18) and
(19), then the numerical flux is defined by the following relation:

1 _
EF,= §[F(u1nR>B0nij) + F(winr, Bonij) — Rer | Are | Ry} (Wing — u1nr)],
(35)
with
ArrLRrr = RrrAgp, (36)
Wipnr = Uip; +8i(1 —8;/3)(Wip; — win) + (14 8;/3)(Wip; — wing)/4, (37)
WinR = Winj — S;(1 —8;/3)(W1pr — w1pj) + (1 +58;/3)(Win; — win) /4, (38)

where the diagonal matrices s; and s; consist of the so-called Van Leer’s differ-
entiable limiter. The Ath components of s; and s; are calculated from the k-th
components of uy,. Without the suffixes 1 and £, they are written as

2(unj — Uni)(Uni — Unir) + €
(unj - uni)2 + (uni - uni’)2 + €’

(39)

S; =

2(unjr — Ung)(Unj — Uns) + €
(tngr = Unj)? + (Unj = tni)® + €’

5j = (40)
with € a small number. Interpolation points 7 and j ’are obtained by extending
the line which connects grid points ¢ and j to the neighboring surface of control
volumes.

A serious problem in numerical MHD simulations involves the violation of
the divB = 0 condition. Not only numerical roundoff errors but also the use
of upwind fluxes and a non-Cartesian grid system make it difficult to fulfill the
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divB = 0 condition automatically. In the present calculation, an extra equation is
added to eliminate artificial magnetic monopoles [21]. The variable components
of magnetic field B; are replaced every several time steps, by a new field By,
given as

Bi. = By + gradg, (41)

v2¢ = —divB;. (42)
To solve equation (41), the conjugate residual (CR) method is applied.

4 Eigenvalues and eigenvectors for the 9-component
MHD equations

In this section, eigenvalues and eigenvectors are shown for the 9-component MHD
equations. For the Jacobian matrix of flux fuction (29), eigenvalues Ay, k = 1~9
are [14]

AL =m), (43)
Aoz = m;ilBél, (44)
Aas =ml, £V}, (45)
Xe,7 = m,,+Vs, (46)
As =0, (47)
Ao =m, (48)
where
ViV = %[Cg + B?+{(Cy + B?)? — 4C,B.*}'/?), (49)
Co =vP/p, (50)

with the notation u/, = (p,m!,, B, U, p2)T = (p,mn/p, me1/p,ms2/p, Bn//Bp,
Bu /V/Bp, Bia/V/Bp,U, p2)T. In the expresion of eigenvalues,\/Cy, |By|,V; and
Vs correspond to sound, Alfen, fast and slow velocities, respectively. In addi-
tion to one entropy, two Alfven, two fast and two slow waves of normal MHD
equations, there appears one more entropy wave in the 9-component MHD equa-
tions. Calculations of eigenvectors must be done with special care avoiding the
degeneration of eigenvectors when wave propagations become perpendicular or
parallel to the magnetic field. The right eigenvectors ry which correspond to Ay
are [19]

1

!

m,

my

My
ry = 0
0
0

0.5-m'?
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rs3 =

)

rg 7 =

F(Bpmy —

0

0
+Bl)-sgn(B,)
+Bl;-sgn(By)

0

n /B
By, \/;
—Bii\/5

Biimiy)-sgn(By,) +
0

(BaBi 1

a
ay(my,£Vy)
aymy, FasBiy Vi By,
apmy, WsBé'szBé

ang'lvf \f

a Bl’t'QVf
af-0.5-m’2 + afoQ/( — l)j:afom'n
FasVy(Bjymy + Biymi,) By,
+ag(=1)/(y = )(V} = Co)
+ap (Vi = Co)(Bf B{'y + By Bl'»)

Ty5 =

/(B> + B?)
L agp2/p J
as
as(m;, £V5)
asmy, +ay By /Co[Vi-sgn(By,)
asmi,+ayBiy/Co/Vy-sgn(By,)

0

—asBii\[2Co/VE

—asBiy\[2Co/VF
as-0.5m'? + a;VZ?/(y — 1)+aV,m!,
*ay(Biymy + Biymg,)
xv/Co/Vi-sgn(By,) + as(=1)/(y — 1)(V7
+a,(V? — Co) (B} B}, + By B] t2)
/(B%? + BYl)?)
asp2/p

—Bé’lBiw)

—_ CO)
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0
0
0
0
re= |1/, (55)
0
0
0
_0_
S
my,
My
Miy
rg = 0 , (56)
0
0
0.5-m'?
1]
where
By = (By, +€)/(Bji + Bjs +2¢°)' /%, (57)
Bé’g = (Bjs +¢)/(Bi} + B3 +2¢)'/?, (58)
11y = (Bijy +€)/(BR + Bj3 + 2¢%)1/, (59)
175 = (B +€)/(Bfi + Bj + 2¢ 2z, (60)
as = (V} ~ BV /(V ~ V)2, (o)
as = (Vi — Co)'/?/(V} = V)?Vy, (62)

and € is a small number.

5 Source terms and boundary conditions

The selection of source terms and boundary conditions depends on the kind of
problem treated by the MHD simulation. Typical source terms considered in
space science are ion production and loss, gravitational acceleration and aero-
nomic friction. They are written as

g1 +qg2—Li — Ly
—vm — pg
F = 0 . (63)
—m/p-(vm + pg) + Ty(q1 +q2)/(y = 1) = Tr.(L1 + L2) /(v = 1)
g2 — Lo

where ¢; and L; (i = 1, 2) are ion production and loss terms for i-th ion species, T}
is the temperature of ions when they are produced, T7, is the temperature of ions
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when they are lost. v and g are ion-neutral collision frequency and gravitational
acceleration. Production and loss rates ¢; and L; (i = 1,2) are normalized by pg
and Lo/(RTy)'/?.

A typical boundary condition on the outer boundary is to give a plasma flow
on the upstream side and a zero gradient condition on the downstream side.
Commonly used boundary conditions on the inner boundary are ion chemical
equilibrium, given plasma velocity, or zero gradient condition. In the case of S-
M-I coupling, the plasma velocity perpendicular to the ambient magnetic field
is decided from the field aligned current (FAC) flowing into the ionosphere.
Assuming a spherical ionosphere at =1 R,, these processes are simulated on
the inner boundary and on the ionosphere from

V-aVor = Gp(rotByny) = Ji|s 64

(64)
o =oguv +opirf(P,p) + os(J)), (65)
m — (mmy)ny = —pVe, xB/B?, (67)

where ¢ is the ionospheric conductivity tenser, ¢ is the ionospheric potential,
¢m is the magnetospheric potential, .J; is the FAC, n; is a unit vector along
B, and G,, is a geometrical factor associated with the mapping along field lines
from r=3 R. to r=1 R.. 0guv,0pif¢, and oy are the ionospheric conductivities
due to the solar EUV, the diffuse auroral precipitation modeled by the pressure
and temperature, and discreet precipitation modeled by the upward FAC [5].
Parallel potential is introduced through f; that is constant at the upward FAC
and 0 at the downward FAC.

6 Parallel computation in a spherical geometry

Recently, the most powerful super-computers, such as the Fujitsu VPP and NEC
SX, adopt the vector-parallel architecture with a distributed memory system.
Efficient utilization of these vector-parallel super-computers is essential for the
future study of space MHD simulations. In parallel computations with a dis-
tributed memory system, it is desirable to set a one-dimensional structuring
axis in the three-dimensional space. In a spherical geometry that is important
for space science, this ”parallel” axis is chosen to be the radial direction. An
unstructured grid can then be generated on spherical surfaces which construct
the remaining two-dimensional space.

In the construction process of the grid system, it is desirable that two-
dimensional spherical surfaces are covered by control volumes of similar size,
because the integration time step is restricted by the smallest control volume.
An example for such kind of grid system is shown in Fig. 1. The left panel in
Fig. 1 shows the grid structure on the spherical inner boundary, while the right
panel shows how to construct a 3-D grid structure by extending the position of
spherically allocated grids outward from the inner boundary.
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Fig. 1. Grid structure for the 3-D FVM calculation

In parallel computations on the distributed memory system of vector-parallel
computers, it is important to identify the difference between distributed and re-
dundant data areas. The parallel axis is used to distribute dependent variables
to processors and to define the overlap data areas. In the finite volume TVD
scheme, the most serious load in calculations comes from those for eigenvalues
(43-50), eigenvectors (51-62), limiters (39,40) and numerical flux (29). These cal-
culations are done sequentially in subroutines on a two-dimensional redundant
data area, after copying 3-D dependent variables from a distributed data area
to two-dimensionl redundant data areas. Using this method means that we do
not have to rewrite subroutines with parallel programming constructs. The par-
allelization then occurs only in the main program which calls these subroutines.
In the calculation of numerical flux, the dependent variables on the neighboring
grid point of the calculation point must be referred to. To enable this referring in
the parallel computation, the overlap data areas are used with the data transmis-
sion. Overlap data must be synchronized to data in the neighboring processors
before the subroutines begin concurrent operation. After the main calculations,
the final correction of the dependent variables is done in the main program, on
the distributed data area. Finally, two processors calculate the inner and outer
boundary conditions.

7 Numerical example 1 (Heliospheric structure)

The pressure difference between the solar corona and interstellar space drives
the ionized solar atmosphere outward, despite the restraining influence of solar
gravity. The solar wind thus generated interacts with the very local interstellar
medium (VLISM) at some large distance from the sun. Here, the volume of the



14 T. Tanaka

space created by the solar wind is called the heliosphere [8] [10] [11] [22] [23]. In
this section, results are shown for the MHD simulation of the heliosphere.

At a distance where the local ram pressure of the solar wind becomes com-
parable to the external VLISM pressure, the solar wind shocks to form the
termination shock (TS), which is a strong shock with a compression ratio 4.
Then outside the TS, the shocked subsonic solar wind flows to the downstream
direction of a uniform interstellar flow surrounding the heliosphere. This region
constrained by the VLISM and filled with shocked solar wind plasma is called
as heliosheath (HS). It is bounded inside by the TS and outside by a tangen-
tial discontinuity between the heliosphere and the VLISM called the heliopause
(HP). Some observational evidences suggests that the interstellar wind is also
supersonic. The supersonic interstellar flow recognizes the shocked solar wind
plasma in the HS as an obstacle and forms a bow shock (BS), which is a mag-
netoacoustic shock. The shocked interstellar wind inside the BS contacts the
shocked solar wind through the HP.

Since the formation process of the heliosphere generates many shocks and
discontinuities, it offers a good problem to test the shock-capturing capability of
the TVD scheme. The outer and inner boundaries for the calculation are set at
1000 AU and 50 AU. In this section, the interstellar plasma and the solar wind
plasma are assigned to p; and p2, respectively. Consequently, p; is zero at the
inner boundary and p- is zero at the upstream boundary. On the inner boundary,
a supersonic solar wind is adopted. The solar wind speed and density at 1 AU
are assumed to be 400 km/sec and 5 cm ™3 respectively, and the strength of the
toroidal interplanetary magnetic field (IMF) here is assumed to be 2.8*cos(f) nT
with 6 the heliolatitude. Toward the outer boundary, the solar wind maintains
a constant velocity while its density and magnetic field fall with heliocentric
distance r as r—2 and r~!. The solar wind temperature at the inner boundary
is assumed to be 10* K. The speed, density and temperature of the interstellar
medium are assumed to be 25 km/sec, 0.1 cm 3, and 10* K. The direction of
the interstellar flow and magnetic field are assumed to be parallel to the ecliptic
plane (toward -z) and to the solar rotational axis (toward +2). The strength
of interstellar magnetic field is 0.15 nT. S and By are not considered in this
problem.

Figure 2 shows the normalized equipressure (P) contour on the polar (upper
half) and ecliptic (lower half) planes. The interstellar wind is from the right. The
normalization value for P and contour spacing are 0.0144 pPa and 0.7, respec-
tively. From the pressure distribution, the major structures of the heliosphere,
the TS with Mach disk, the HP, and the BS are clearly visible as discontinu-
ities. These high-quality resolutions of discontinuities are due to the excellent
shock-capturing property of the TVD scheme.

At the BS the kinetic energy of the interstellar wind is converted to thermal
and magnetic energies. Downstream of the BS, consequently, gas pressure domi-
nates over the kinetic pressure. At the HP, increased gas and magnetic pressure
are supported by the HS plasma pressure which is maintained by a supply of
shocked solar wind pressure from the TS. The highest pressure in the HS appears
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Fig. 2. Pressure distribution in the heliosphere

in the nose region because it must finally balance with the dynamic pressure of
the interstellar wind.

The enhanced HS pressure around the nose region accelerates the shocked
solar wind plasma toward the heliotail (HT). At the flank of the heliosphere,
the oblique TS also helps the HS flow direct downtail based on the principle
that at an oblique shock the downstream flow is always deflected away from
the shock normal. On the contrary, the tailside TS consists of right-angle shock,
because the post-shock flow can direct downtail as it is. Consequently, tangential
discontinuity develops in the downstream HT, to separate fast HT flow that
continues from the flank HS from a slow HT flow that exits directly from the
tailside TS. This is a basic mechanism to form a bullet-shaped TS (Mach disk)
on the downstream side [11].

8 Numerical example 2 (Solar wind-Venus interaction)

Since the internal magnetic field of Venus is negligibly small, the solar wind
makes a direct contact with the ionosphere. When the interaction processes be-
tween the solar wind and planetary ionospheres are studied, at least two plasma
components must be considered [9] [24] [25]. In the case of venusian ionosphere,
the primary component of ionospheric plasma is O ions, whereas the primary
component of the solar wind is H* ions. So one must consider two plasma com-
ponents to distinguish the ionospheric plasma from the solar wind plasma. In
this section, therefore, the solar wind plasma and ionospheric plasma are as-
signed to p; and ps, respectively. In this problem, source terms S are essentially
important, because the high-density low-temperature ionospheric plasma that
supports the impinging solar wind stratifies gravitationally on the balance of ion
production and loss, neutral drag, and the gravitational acceleration. For the
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calculation of py, Lo, and v, a stratified atmosphere composed of O and COs is
assumed around the planet. q;, Ly, and By are set to zero in this section.

The inner and outer boundaries of the calculation region are at 1 R, and
10 R,, with R, the planetary radius. On the outer boundary, the solar wind
flow is given on the upstream (+z) side while the zero gradient condition is
adopted on the downstream (-z) side. Where the IMF is assumed to be parallel
to the y-axis. Near the inner boundary, the ion-neutral collision and ion chemical
processes become dominant. Therefore, the ion chemical equilibrium and zero
plasma velocity conditions are adopted on the inner boundary. Since the scale
sizes of the ionosphere and the solar wind are quite different from each other,
the grid points must be allocated so as to be dense in the ionosphere and coarse
in the solar wind.

Figure 3 shows the result for the distributions of O (left) and total (=H™ +
O™, right) ion densities. The solar wind is from the left. The left and right panels
in Fig. 3 show contours of log(p2/psw) and log(p/psw), respectively. Where pgy,
is the solar wind density. The contour spacing is 0.2 and the dashed contours
are used at every 1.0. The minimum contour value for a dashed contour is 0.0.
The upper and lower halves of the two panels show sun-planet meridian planes
and equatorial planes defined by the direction of the IMF. The solid circles show
the size of the planet. An excellent capturing of shocks and discontinuities is
seen in Fig. 3. Results of the calculation show the formation of the BS, magnetic
barrier and the ionopause in the dayside region. At the ionopause, the primary
ion species change from H™ on the high-altitude side to O on the low-altitude
side. In the nightside region, the ionospheric structure shows rather complex
features. A part of OT ions penetrates into the magnetotail which results from
the draping process of the IMF. Then, the penetrating OT ions tend to gather
toward the central part of the magnetotail and form a high-density region. In
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Fig.3. O density (left) and Ht+O™ density (right) around the planet
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Fig. 4. Pressure balance along the sun-planet line

these results, the solar wind and ionospheric plasmas are distinguished clearly
by the 9-component MHD equations.

Figure 4 shows altitude distributions of fluid pressure (P), magnetic pressure
(B) and plasma dynamic pressure (Ram) at the subsolar point. Where small
rectangles show positions of radial grid points. The pressures are normalized
by the solar wind pressure. In the upstream solar wind, plasma kinetic energy
dominates both of fluid pressure and magnetic pressure. At the BS, plasma
kinetic energy is converted to plasma thermal energy. As a result, the fluid
pressure becomes dominant after passing the BS. Approaching the ionopause,
the magnetic pressure increases while the plasma pressure decreases, due to the
formation of the magnetic barrier. At the ionopause, the magnetic barrier is
supported by the fluid pressure of cold ionospheric plasma. This pressure of
cold ionospheric plasma is maintained by the photoionization and ion chemical
processes in the planetary upper atmosphere. The plasma pressure on the bottom
side of the ionosphere is supported by the neutral atmosphere through ion-
neutral collisions.

9 Numerical example 3 (Substorm and space weather)

A goal of the space weather effort is to increase our understanding of the S-
M-I coupling system. In recent years, the global MHD simulation has become
increasingly successful at constructing and predicting the behavior of the S-M-I
system [1] [5] [6] [12]. It gives a theoretical foundation for the complex behavior
of the S-M-I system that is controlled by the coupling process between different
regions.
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Fig. 5. Magnetospheric convection

In the solar wind interaction with the magnetosphere, energy and momen-
tum are transferred from the solar wind to the magnetosphere through non-
ideal MHD processes, to generate magnetospheric plasma convection [4]. Figure
5 schematically shows the construction of convection system. In the magneto-
sphere, the large-scale transportation of plasma is equivalent to a global electric
field. The process driving the magnetospheric convection is at the same time the
process generating the FACs, because the magnetospheric perpendicular stress
must be transmitted to the polar ionosphere so as the ionospheric convection to
follow the magnetospheric convection [3] [26]. In the current circuit connecting
the magnetospheric dynamo and the conducting ionosphere, the JxB force in
the ionosphere acts to accelerate the ionospheric convection against atmospheric
friction. As a counter part of this energy dissipation in the ionosphere, FACs
must be powered through the dynamo driven by the energy conversion in the
convection system. Therefore, acting as a load for the magnetospheric convection
in the M-I coupling system, the ionosphere controls the intensity of FAC.

In this section, we investigate the M-I processes that maintain the self-
consistency in the convection system, including the generation mechanism of
the M-I current systems, the ionospheric control of the magnetospheric configu-
ration, and possible extension of convection status to the substorm. The FAC and
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plasma convection play a central role in the M-I coupling, while the state of en-
ergy source for these current systems depends on the solar wind-magnetospheric
interaction. To improve our understanding of this problem, therefore, a self-
consistent treatment is required for the coupling effects between three different
regions, namely the solar wind, the magnetosphere and the ionosphere.

In the numerical study of the S-M-I coupling process, numerical errors in
the low-f region near the ionosphere should be reduced. For this purpose, the
MHD calculation is reconstructed as shown in equation (29) to suppress the
direct inclusion of the potential component of the magnetic field as dependent
variables. From these situations, a dipole magnetic field is assumed as Bg. S and
p2 are not considered in this section. The outer and inner boundaries for the
simulation are at 200 R, and 3 R.. A uniform solar wind with a speed of 350
km/sec and an IMF magnitude of 5 nT is assumed at the upstream boundary and
zero gradients are assumed at the downstream boundary. Dependent variables
are projected along the field line from the inner boundary (=3.0 R.) to the
ionosphere. In the ionosphere, equations (64) and (65) are solved to match the
divergence of the Pedersen and Hall currents with the FAC.

Figure 6 shows the response of the magnetosphere to the southward turning
of the IMF. The color figure shows the pressure distribution in the noon-midnight
meridian plane of the magnetosphere at three times. Where P is normalized by
the solar wind P. The bottom row illustrates the initial magnetospheric config-
uration for the northward IMF. At this time (7.7 minutes after the southward
turning of the IMF), a thick and low-pressure plasma sheet is observed. The flow
structure at this time (not shown) indicates that x line is situated beyond z =-
60 R., which is the remnant of merging cell structure under the northward IMF
condition [4] and called the distant neutral line. The growth phase shown in the
second row (59 minutes after the southward turning of the IMF) is character-
ized by erosion of the dayside magnetosphere, thinning of the plasma sheet, and
an increase in the flaring angle. The tail-like configuration of the plasma sheet
during the growth phase is the consequence of an enhanced convection.

The substorm onset occurs as an abrupt change of the magnetospheric con-
figuration in the near-earth tail. The top row in Fig. 6 (72.6 minutes after the
southward turning of the IMF) shows the pressure distribution after the onset il-
lustrating the appearance of the high-pressure region in the inner magnetosphere
and the formation of the NENL in the midtail. Figure 6 also shows pressure and
V, distributions along the -z axis in the near-earth and midtail regions before
and after the onset. Where V,, is normalized by the solar-wind sound velocity.
After t=70 min, a sudden change of pressure profile is seen to start just like
a transition from one state to another [5]. Before the onset (¢<70 min), the
strongest —V P force acts in the region between £=-10 and -20 R.. As a result,
earthward convection is obstructed at z=-14 R.. In addition, a gradual forma-
tion of NENL is seen at £=-33 R, before the onset. After the onset (¢£>70 min),
the peak position in the pressure distribution shows a rapid inward movement.
The pressure peek abruptly moves further inward to z=-8 R.. At the same time,
the convection flow intrudes into the inner magnetosphere inside z=-10 R, in-
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Fig. 6. Substorm sequence obtained from the MHD simulation

creasing in magnitude. Through these transition processes, a new stress balance
is achieved in the near-earth plasma sheet in which recovered magnetic tension
is balanced by newly established pressure inside z=-10 R,.. This pressure change
is, in turn, a result of energy conversion from magnetic energy to internal en-
ergy caused by the pumping effect of convection associated with the recovery of
magnetic tension. The fastest earthward flow in the plasma sheet appears after
about 5 minutes from the onset. Then, tailward flow increases its speed. After
t=75.3 min, the NENL begins to gradually retreat downtail.

During substorms, the ionospheric conductance enhances to a large extent
due to precipitating particles which carry enhanced FACs. As a result, the cou-
pling rate between the magnetosphere and the ionosphere becomes stronger, and
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the magnetosphere comes to hold a heavier load. However, the role of a variable
M-I coupling in substorm onset is not clear at the present time [5].
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