Global Structure of the ISM in galactic disks and in the central region of galaxies

WADA Keiichi

(National Astronomical Observatory of Japan)

Methods & techniques

2D/3D Hydrodynamic Simulations, Euler method with a uniform Cartesian grid

- * Poisson equation for self-gravity
- * Energy equation with heating/cooling processes
- * Optimization for high-performance computers

Gas dynamics in a bar-potential

Taking into account relevant physics is essential, but....

Central region of M51(2kpc x 2kpc)

The ISM is very inhomogeneous on ~10 pc scale.

Many filaments, and "mesh" of the dust lanes

HSTobs. (Scoville et. al)

Central region of Seyfert NGC 3982 multi-armed dust lanes

Regan & Mulchaney (1999)

Origin of the structures: Instabilities?

- Filaments/clumps/clouds, holes, voids/holes
- Multi-phase: Cold gas, Warm gas, Hot gas
- Turbulent + rotation
- Is it possible to be quasi-stable on a galactic scale, but unstable on a local scale?
- Can we reproduce these features by numerical simulations from the first principle (with minimal assumptions)?

2D/3-D Hydrodynamics of a gas disk in a spherical galactic potential

Evolution/Structure of the massive gas disk -- 2-D/3-D Hydrodynamic **Global** Modeling --

Initial conditions and input physics:

- Rotationally supported, uniform disk in a fixed spherical potential (stars +DM)
- Self-gravity of the gas
- A cooling function $(10 < T < 10^8 \text{ K})$ is assumed.
- Heating sources: uniform UV & supernova explosions
 - Evolution of SNR is directly followed w/ sub-pc resolution

Wada & Norman (2001,2003), Wada (2001), Wada, Meurer, Norman(2002)

Basic Equations

Conservation of mass, momentum, & energy, Poisson eq.

$$\frac{\partial \boldsymbol{\rho}}{\partial t} + \boldsymbol{\nabla} \cdot (\boldsymbol{\rho} \, \boldsymbol{v}) = 0,$$

$$\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{\nabla})\boldsymbol{v} + \frac{\boldsymbol{\nabla}p}{\rho} + \boldsymbol{\nabla}\Phi_{\text{ext}} + \boldsymbol{\nabla}\Phi_{\text{sg}} = 0, \qquad (2)$$

$$\frac{\partial E}{\partial t} + \frac{1}{\rho} \boldsymbol{\nabla} \cdot \left[(\rho E + p) \boldsymbol{v} \right] = \Gamma_{\rm UV} - \rho \Lambda(T_g), \quad (3)$$

$$\nabla^2 \Phi_{\rm sg} = 4\pi G\rho, \qquad (4)$$

(1)

Methods: AUSM w/ uniform grid:256³, 256³x 128, 512²x32; 2048² - 4096²) + Poisson eq. Solver(FFT) CPU time: ~ 10-200 hours/run

Time evolution of the disk

<u>"tangled-web" structure of the ISM in a galaxy</u>

No energy input from supernovae

2048² grids, 0.98pc/grid

Clumps/filaments

- high density, low T(<100K)
- "GMC" = complex of clouds & filaments

Cavities/Holes

- low density, high T
- Shock heated gas (~10⁵K)

Wada & Norman, ApJ 516, L13 (1999) ApJ 546, 172 (2001)

1 kpc

Density ranges over four orders of magnitude for a given T_{gas} . \Rightarrow Pressure is distributed in a wide range \Rightarrow Different phases are not necessary in a pressure equilibrium

Evolution of PDF in 3-D galactic disk

Initial condition is lost within a few dynamical times.

ISM in a galactic disk is NOT discrete phases.

High density gas is not independent of lower density gases.

Universal PDF of the ISM in galaxies

Log-Normal part: Highly inhomogeneous.

Higher density gases occupy smaller volumes. <u>Structures of dense gases are not independent of lower density</u> <u>gases.</u>

Globally stable disk ->> PDF does not evolve

A 2-D model with energy feedback from supernovae

Effect of stellar energy feedback on the PDF Log-Normal PDF is robust

<u>3D structure of a nuclear massive disk</u>

512² x 32 grid points (0.5 pc/grid) Wada (2001) ApJ 559, L41

Evolution of Energy spectrum (no SN, 2-D model) The spectrum attains a power-law in ~20Myr Compressible (rotational free) Incompressible (divergence free)

There is no explicit energy input.

Turbulence on a galactic scale is self-regulated without supernovae.

Rotational component: galactic rotation dominates turbulent energy on large-scale

Distribution of stable/unstable regions

- Stable and unstable regions patchily exist.
- median Q ~ 5, but large dispersion
- Energy source of the turbulence = local gravitational instability + galactic rotation

Note: differential rotation is not essential to maintain the turbulence

- Turbulence is also developed in a rigid rotation disk.
- Energy spectrum is slightly steeper in rigid rotation.

KW, Meurer, Norman (2002)

Super massive BH (10^{6-8} M_{sun}) + accretion disk (AU scale) + BLR + NRL + Obscuring molecular torus (1-100 pc) + Jet + ENLR

Energy source: mass accretion $(0.01 - 1 \text{ Msun yr}^{-1})$

3-D Hydrodynamics of a massive gas disk around a SMBH (KW & Norman 02; KW & Tomisaka 05)

Starburst driven "torus" around SMBH

density

KW & Norman '02

- ISM is a flared disk with clumps and filaments.
- Scale height is determined by energy balance between turbulent dissipation and SN heating in a gravitational potential.

Density, temperature in the "torus"

T~ 50-10⁷ K, n ~ 0.1-10⁵ cm⁻³

KW & Norman (2002) ApJ 566, L21

Obscuring "torus" around a supermassive BH with nuclear starburst

256² x 128, uniform grid, 0.25pc/grid Radiative cooling (5–10⁸ K), SN feedback, selfgravity $M_{BH} = 10^8 M_{sun}, M_{gas} = 10^7 M_{sun}$,

> QuickTimeý Dz ÉrÉfÉI åLi£ÉvÉçÉOÉâÉĂ ǙDZÇÃÉsÉNE`ÉÉÇ%å©ÇÉÇŹÇ%Ç…ÇÕIKóvÇ-Ç ÅB

▲....**6**4 pc

Geometry of SNe-driven torus

If we assume:

- Internal motion of the torus is turbulent
- turbulent energy dissipation = heating by SNe

Scale height of the torus is proportional to $(SFR/M_{BH})^{1/2}$

Gas accretion to the nucleus (R<1pc)

% accretion rate is time-dependent ($\tau \sim 10^{4-5}$ yr)

Summary: Origins of the inhomogeneity of the ISM in galactic disks and in AGNs

- 1. <u>Gravitational and Thermal instabilities</u> coupled with the <u>galactic rotation</u>
 - Fully developed turbulence is naturally generated in galactic disks.
 - The turbulent motion is maintained by the galactic rotation, and local shear motion.
- 2. <u>Supernova explosions in a dense gas.</u>
 - SNRs interact with the inhomogeneous ISM, and it causes turbulent motion in the torus.
 - The accretion rate toward the central BH is time dependent.

