Introduction to vector/parallel computers

Ryoji Matsumoto (Chiba University)

High Performance Computers

What's Pipeline ?

Some Hints to Get High Performance in Vector Processors

Use long vector

Some Hints to Get High Performance in Vector Processors

• Avoid operations which wait the completion of previous operation

A(i+1)=A(i-1)+A(i)

$$A(4)=A(2)+A(3)$$

Access memory sequentially

do
$$i = 1$$
, ix
do $j = 1$, jx
 $a(i,j)=b(i,j)+c(i,j)$
enddo
enddo

do j = 1, jx
do i = 1, ix
a(i,j)=b(i,j)+c(i,j)
enddo
enddo

Parallel Computers

Shared Memory Machines

Distributed Memory Machines

Vector/Parallel Computers

• VPP5000 @ NAOJ

• Earth Simulator @jamstec

640 nodes 8 processors in each node 8GFLOPS/PE 16GBmemory/ node

60PES

8GFLOPS/PE

16GB memory/PE

Earth Simulator

640 nodes * 8 = 5120 processors, 40TFLOPS 16GB memory in each node

How to Parallelize a Code

- Shared Memory Machines
 - -autoparallel
- Distributed Memory Machines
 - –Message Passing MPI
 - Data parallel language
 HPF, VPP-FORTRAN

Parallelization of MHD Codes

Domain Decomposition

1D

Communication between PEs in explicit MHD codes

Parallelized Modules in CANS

- Please check modules with name mdp_....
- They are parallelized by using MPI

Data-exchange modules are in the directory "commonmpi"