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- What is turbulence?
- What has been studied about turbulence?
- What are problems involving turbulence?
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What is turbulence?

Turbulence is a flow regime characterized by high
momentum convection, low momentum diffusion, and

pressure and velocity variation with time.

The Reynolds number characterizes whether flow

conditions lead to turbulence or not.
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Laminar Flow
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terrestrial examples 1
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turbulence creatinga
vortex on an airplane wing

LA

turbulent flow around :
an obstacle; the flow 3
further away is laminar —
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terrestrial examples 2




astrophysical examples 1 _
Re >> 1 1In

astrophysical
environments

a Solar filament

Jupiter’s Great Red

Spot from Voyager o

-
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astrophysical examples 2
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Crab Nebula - supernova remant

NGC 6302; Big, Bright, Bug
Nebula - planetary nebula
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Statistical description of turbulence

power spectrum, P, - the portion of a signal’'s power (energy per unit
wavenumber) falling within given wavenumber
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Theory of turbulence

Kolmogorov's theory for incompressible hydrodynamic turbulence:

It Is based on the notion that that large eddies can feed energy to the
smaller eddies and these in turn feed still smaller eddies, resulting in a
cascade of energy from the largest eddies to the smallest ones.
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power spectrum of velocity!
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In astrophysical environments

Re~%>>1

V

magnetic field exists in astrophysical environments:
with magnetic field
fluid —— drags magnetic field
magnetic field —— exerts tension and pressure
= fluid and magnetic field moves together (“frozen”)
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Super-Alfvenic turbulence
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Goldreich & Sridhar model

for strong regular field

B ) Applicable to most part
( B large or UA=ﬁ~U > of the ISM
2 470

but still incompressible or subsonic

Goldreich & Sridhar (1995) considered dynamics of
Alfvenic wave packets.
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-~ Goldreich & Sridhar model

critical balance
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what the Goldreich & Sridhar model says
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but astrophysical turbulence is highly compreésible!
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compressible hydrodynamic turbulence

sound mode (compressible mode)
sound waves or shock waves

+ advection (incompressible or solenoid mode)
mixing

hydrodynamics with the isothermal TVD code
3-D with 5123 and 2563grid zones for various M
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velocity power spectrum from 3D hydro simulations -{*‘E
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density power spectrum from 3D hydro simulations ==
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3d hydro
turbulence
with M =
1.2

“saw-toothed
distributions




3d hydro
turbulence
with M =
12

“peaked”

distribution
for density
“saw-toothed
distribution
for velocity




compressible magnetohydrodynamic (MHD) turbulence

MHD modes
— Alfven mode (v=v, Cc0s0)

Incompressible,
restoring force=mag. tension

/<T slow mode (v~c,)

for magnetically dominated
----------- plasma (v, > c.), this is a sound
wave along magnetic field,
compression of gas

ﬂ} A A A A A A A

@

fast mode (v~v,)

", for magnetically dominated
k plasma (v, > c,), this is

: magnetic field compression
wave; compression of B field
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SPECTRA
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scaling relation for low 3 and high M, turbulence g=

Alfven ~k -5/3
0 R Hk‘—s/s ‘ .
0

10 Lé E
1079k ]
1074k ]
1072k L]

: ——F (k) of Alfven modes
WO_B R E,(k) of Alfven modes
1077 )

1 10

10 20 30 40
Parallel Distance (Grid Units)

SPECTRA

Perp. Distance

Asian Winter School on Numerical Astrophysics

P gas

pmagnetic
slow ~k -5/3 W fast ~k -3/2(?)
T A 10 Y N
L ~5/3 CC) | - 2:— \k‘g/L (e) ]
________ o 0—3 7 \ﬂ\\ i
,,,,, £ : o
o 107%L 9 ]
o U
-, ? 0k N
E (k) of Slow modes ™. P — E (k) of Fast modes ]
————————————— E\é(k) of Slow modes . 10700 e E, (k) of Fast modes \s 1
————— E~(k) of Slow modes _7f -----E (k) of Fast modes S
1 10 100 1 10 100
k k
Slow Modes (d) i3 Fast Modes UV

Perp. Distance

40 50 B

30
Parallel Distance (Grid Units)

10 20

10 30 40
Parallel Distance (Grid Units)

(Cho & Lazarian 2002)
Chiba University, Japan



what seems to have learned about compressible
turbulence with low 3 and high M, (applied to the 1SM)

power spectra of velocity and magnetic field
Alfven mode: Kolmogorov slop, anisotropic - G-S model
slow mode: Kolmogorov slop, anisotropic (passively) - G-S model
fast mode: -1.5 slop (?), isotrpic
velocity power spectrum
Alfven mode > fast+slow mode
(solenoid mode > compressible mode)
density power spectrum
shallower slop
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log, q{spectral density, Py, (m™))
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of cold HI gas (M ,~2-3)

dash line represents a
dirty PS obtained after
averaging the PW of 11
channels.

solid line represents a
true PS obtained after
cleaning.
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much shallower poswer
spectrum!
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power spectra of various observed quantities:
seem to be compatible with that of Kolmogorov
turbulence in most observations, but not in all
observations

In astrophysical turbulence
— compressibility is important, or flow is supersonic

— magnetic field exists
— observed power spectrum is not that of velocity
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Two star formation theories =

SF regulated by AD
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SFEs measured in 3D driven HD turbulent flows

sink particles p > 104 p,
SPH calculations
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B M. is mass fraction in sink particles. -

-4 -2 0 2 1+ - <M, IS effective turbulent Jeans Mass
- SFEs are very high in 3D driven HD turbulent
flows, except cases driven at small scales.
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(Schuecker et al. 2004)

Coma pressure map




pressure fluctuations

histogram of projected
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fluctuations are mostly gaussian and adiabatic
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noise subtracted power spectrum of
projected pressure fluctuations with == close to Kolmogorov
slope n~-7/3 ...-5/3
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