Chapter 1

Lecture

In this chapter, we learn how to solve hydrodynamical equations and magnetohydrodynami-
cal equations. These equations are hyperbolic partial differential equations and describe the
propagation of waves. The wave property is key in constructing a numerical scheme for solving
hyperbolic partial differential equations. Thus, in the first half of this chapter, we learn how
to solve a simple one-dimensional wave equation. The numerical method gives us a basis for
the hydrodynamical and magnetohydrodynamical equations, which are multi-dimensional and
nonlinear.

1.1 Finite Difference Method

Physical quantities such as density and velocity are described as a field, i.e., a function of time
and space, in hydrodynamics and magnetohydrodynamics. These quantities are described by
arrays having finite numbers of discrete elements in numerical computations. You may already
be familiar with this concept, which is also used to solve ordinary differential equations. When
we solve partial differential equations, the physical quantities are tensor, because time and space
are independent variables.

We consider the simplest case, in which a physical quantity, f, is a function of time, ¢, and
the distance, z. Suppose that we know the value of f at the poiuts (z, t) = (jAz, nAt) for any
integers j and n, where At and Ax denote a very short time interval and a very short distance,
respectively. Then the array,

fim = flx = jAz, t = nAt), (1.1)

can be regarded as a function of x and ¢ in a practical sense. We call Az and At the grid spacing
and time step, respectively.

We can evaluate the partial derivative 0f/0x from the array f;,. However, the evaluation is
not unique. Suppose that the function, f, is a solution of a partial differential equation. Several
different expressions converge to df/0x in the limit of Az — 0. For simplicity, we assume that
the function f is smooth and differentiable. Then, the following three expressions:

fivin — fim 3_f 1 0%f

_ - 2
— = o+ gl + O0(A), (1.2)

fim — fi-in  Of 10°f 2
= = oo 5+ 0(Ad), (1.3)

fj+1,n - fjfl,n - 8f 1 83f 2 3
QAI = 8—$+6$A1‘ +O(Al‘), (1.4)
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denote good approximations to df/0z. Equations (1.2), (1.3), and (1.4), are referred to as
the forward difference, backward difference, and central difference, respectively. The forward
difference and backward difference are of first-order accuracy because the deviation from the
differential is proportional to Az. The central difference is of second-order accuracy because the
deviation is proportional to Az?. One might expect that the central difference should always
be superior to the forward difference and backward difference because the accuracy is of higher
order. This is not true however, and, as shown later, we obtain a better numerical solution
when a differential equation is approximated with either the forward difference or the backward
difference. An example is presented in the next section.

1.2 Linear Wave Equation

We consider the simplest wave equation:

of of _

where ¢ is a constant and denotes the wave propagation speed. We approximate Equation (1.5)
by replacing each term with a finite difference. It is a natural choice to approximate

of . Jim+1 — fin

B A7 , (1.6)

and to express 0f/0x as a function of fji1 . fjn, fj—1n. Then, we can express f; 41 as an
explicit function of fj41p, fjn, fj—1,n and solve the initial value problem of Equation (1.5) easily.
If we apply the forward difference to the spatial derivative, we have

fjn+1_fjn fj+1n_fjn
: : n — Jin . 1.
AL +c Ao 0 (1.7)

Equation (1.7) is of forward difference in space and in time. If we apply the backward difference
and central difference to the spatial derivative, we have

Jim+1 — fin Jim — fi-im
9 9 9 9 — 1.
At +c Ay 0, ( 8)
wnd f fim | f i
j’n+1 - j,TL j+1,7’L - j—l,TL
- v p— 1-
AL ¢ oA 0, (1.9)

respectively. Although these three finite difference equations are quite similar in expression,
their respective solutions are quite different from one another, as shown below.

1.3 Stability Analysis

We next compare the solutions of equations (1.7), (1.8), and (1.9), with the solution of equation
(1.5). Suppose that the initial value at ¢ = 0 is given by

[ = exp <Z§—i> ; (1.10)
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where i denotes v/—1. For later convenience, the function f is assumed to be complex. ! Then,
the initial value is expressed as

fio = exp (ikj), (1.11)

in array form. The wave number is assumed to be in the range 0 < k < m without loss of
generality. 2 The solution of the differential equation is

[ = exp [W] : (1.12)

Thus, ideally, the solution of the finite difference equation is expressed as
) ) cn/At
fin = exp [zk (j AL >} . (1.13)

The solution of Equation (1.7) is

fj(,l;? — {1 _ CAAxt [exp(ik) — 1]}" exp(ikj) . (1.14)

Although some computations are required to derive the solution, it is easy to confirm the solution
by substitution. Similarly, the solutions of (1.8) and (1.9) are

® _ [, _ At ol .
Fjm = {1 A, L~ expl Zk)}} exp(iky) , (1.15)
and N .
©) _ ccat . o
fin = {1 AL smk} exp(ikyj), (1.16)

respectively. All of these solutions approach the exact solution given by Equation (1.13) in the
limit of very small At, because the term in brackets is approximately 1 — ikcAt/Ax. The ratios
between the approximate and ideal solutions are evaluated to be

- [gm)r‘ Fim (1.17)
i {gus)}” Fim (1.18)
£ = [g@r Fim (1.19)
where
cAt . ick At
g = {1 — A lexp(ik) — 1}} exp( Ag > , (1.20)
® 7@ B . 1ck At
g {1 AL [1 — exp( zk)]} exp< s ) (1.21)
g(C) - [1 — Z%Amt sink} exp <zc§§t> . (1.22)

"We assume that the reader is familiar with complex analysis. The same mathematical techniques are used in
the analysis of electric circuits.

2Since j is an integer, the value of fj,0 remains unchanged or changes only its sign when we replace k with
k' = k + nm. The restriction, 0 < k < 7, does not cause any loss of generality.
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Thus, the error due to the finite difference is estimated from the deviations of ¢®), ¢®), and
¢'©) from unity.

The error depends on ¢, k, At, and Az. However, we can restrict ourselves to the case of
¢ > 0 without any loss of generality. Note the relation, ¢')(—¢) = ¢®)(c)*, where the asterisk
denotes the complex conjugate. The error of the forward difference for negative c is evaluated
from that of the backward difference. This is based on the fact that simultaneous inversion of
the propagation speed and coordinate causes no practical change. The error does not depend
on the sign of the propagation speed in the central difference because g(©)(—c) = g¢(©)(c).
Furthermore, the speed of sound appears only in the form of cAt/Az in Equations (1.21),
(1.22), and (1.22). The term, cAt/Ax, is called the CFL number, where CFL stands for three
mathematicians, Courant, Friedrich, and Levy. Thus, the error depends on two nondimensional
numbers, cAt/Az and k. When the wavenumber is very small (0 < k < 1), any g is very close
to unity. Thus, we are interested in the case in which the wave number k is relatively large.
Here, we study the dependence of the error on the CFL number for k/m = 0.25, 0.5, and 0.75.

As shown in Figure 1.1, the absolute value | g(F)| is larger than unity and increases mono-
tonically with cAt/Ax. This causes difficulty in that the wave amplitude increases with time in
the forward difference. Even when [¢(")| is only slightly larger than unity, the wave amplitude
increases exponentially with time because we repeat the manipulation.

Next, we examine the backward difference. Figure 1.2 shows the error of the numerical
solution obtained by the backward difference. The absolute value of the ratio, |g(®)|, does
not exceed unity in the range 0 < cAt/Az < 1. Accordingly, the amplitude does not grow
unnaturally as long as the CFL number is smaller than or equal to unity. The backward difference
gives the best solution among the three differences compared in this section, as shown later.
The reader might wonder why this is the case. Why does the wave amplitude diminish in the
backward difference solution, whereas it is constant in the exact solution? We shall examine the
central difference before answering this question.

Figure 1.3 shows the error of the numerical solution obtained by the central difference. The
ratio, |g(©)|, is the closest to unity than |¢\F)| and |g(“)| when the CFL number is small. However,
the ratio is slightly larger than unity and the wave amplitude grows exponentially with time.
Thus, the central difference does not provide a satisfactory solution.

The above analysis, which is referred to as von Neumann stability analysis, is applied to
a sinusoidal wave. However, the result is valid for any initial value because any solution is
expressed by superpositions of sinusoidal waves for a linear differential equation. 2 If the von
Neumann stability analysis does not allow for the possibility of divergence for any sinusoidal
wave, the amplitude of the wave never diverges, irrespective of the wave form. We shall confirm
this for a rectangular wave.

Figure 1.4 shows the numerical solution of Equation (1.5) for ¢ = 1. The solution is obtained
by the forward difference. The initial value is given by

J1 (z<0)
f= {0 (>0 (1.23)

at t = 0. The time step and grid spacing are taken to be At = 0.08 and Az = 0.1, respectively.
The solid curve denotes the numerical solution at ¢ = .24, while the dotted curve denotes the
exact solution at ¢ = 0.24. As expected from the von Neumann stability analysis, the numerical
solution shows a large oscillation and is very different from the exact solution. Note that only
three time steps spoil the solution completely.

3This is proven by Fourier analysis.
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Figure 1.1: The ratio of the numerical solution obtained by the forward difference to the exact
solution is shown as a function of the CFL number. The upper panel denotes the absolute value,
| g(F)\, while the lower denotes the phase difference, Slog g(F).
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Figure 1.2: The ratio of the numerical solution obtained by the backward difference to the exact
solution is shown as a function of the CFL number. The upper panel denotes the absolute value,
| g(F)\, while the lower denotes the phase difference, Slog g(F).
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Figure 1.3: The ratio of the numerical solution obtained by the central difference to the exact
solution is shown as a function of the CFL number. The upper panel denotes the absolute value,
| g(F)\, while the lower denotes the phase difference, Slog g(F).
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Figure 1.4: Numerical solution obtained by the forward difference. The dotted line denotes the
initial condition, while the solid curve denotes the numerical solution for the stage forwarded
three time steps. It is very different from the exact solution for the corresponding stage (dashed
curve). The CFL number is taken to be 0.8.

The numerical solution shown in Figure 1.4 has another problem in that the wave does not
seem to propagate to the right. This problem is also explained by the von Neumann stability
analysis. The lower panel of Figure 1.1 shows that the phase error, S log ¢'f), is large for the
forward difference. The wave propagation can not be followed properly in the forward difference
due to the large phase error.

Figure 1.5 shows the numerical solution of Equation (1.5) for ¢ = 1. The solution is obtained
by the backward difference. The initial condition, wave propagation speed, time step and grid
spacing are the same as those for Figure 1.4. The backward difference gives a good approximation
of the exact solution, although the numerical solution is appreciably round at the wave front.

Figure 1.6 shows the numerical solution of Equation (1.5) for ¢ = 1. The solution is obtained
by the central difference. The numerical solution is closer to that obtained by the forward
difference than that obtained by the backward difference. Equations (1.7)-(1.9) imply that the
central difference is something similar to the average of the forward difference and backward
difference. The average of the good solution and the bad solution is similar to the bad solution,
because oscillation grows exponentially in the bad solution.

Comparison of Figures 1.4, 1.5 and 1.6 show that only the backward difference provides an
acceptable solution. Next, we examine whether the backward difference gives a good solution
for a later stage. Figure 1.7 shows the solution obtained by the backward difference for t = 0.4,
0.8, 1.2, 1.6, and 2.0. The time step and grid spacing are again At = 0.08 and Az = 0.1,
respectively. No artificial oscillation appears in the solution obtained by the backward difference.
However, the approximate solution has an appreciably dull wave front at ¢ = 20, whereas the
wave front in the exact solution is sharp. The width of the transition region widens with time
due to the damping of short waves, as indicated by the von Neumann stability analysis.
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Figure 1.5: Numerical solution obtained by the backward difference. The dotted line denotes
the initial condition, while the solid curve denotes the numerical solution for the stage forwarded
three time steps. It is very different from the exact solution for the corresponding stage (dashed
curve). The CFL number is taken to be 0.8.
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Figure 1.6: Numerical solution obtained by the central difference. The dotted line denotes the
initial condition, while the solid curve denotes the numerical solution for the stage forwarded
three time steps. It is very different from the exact solution for the corresponding stage (dashed
curve). The CFL number is taken to be 0.8.
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Figure 1.7: Numerical solution obtained by the backward difference. The dotted line denotes
the initial condition, while the solid curve denotes the numerical solution for a later stage. It
is very different from the exact solution for the corresponding stage (dashed curve). The CFL
number is taken to be 0.8.

The numerical solution also depends on the CFL number. Figure 1.8 compares the solutions
obtained with different values of At¢. The dashed curve denotes the solution obtained with
At = 0.04. The wave front is rounder and the transition region is wider. This is due to two
factors: the wave amplitude decreases more in each time step (smaller [¢®)|) and more time
steps are required to reach a given t. The solution obtained with a smaller At is no better,
and the time step should be smaller than A¢ < 0.1 in this problem. The solution obtained
with At = 0.101 (dash-dotted curve) shows an unnaturally large oscillation. The von Neumann
stability analysis indicates that the wave amplitude grows when the CFL number exceeds unity.
When At = 0.101, the CFL number is 1.01 and the value of \g(B)\ is only slightly larger than
unity. However, the amplification is repeated 99 times at ¢ = 10. Thus, the solution is not
acceptable.

We can now be certain that the backward difference gives a good numerical solution as
long as the CFL number is smaller than unity. Next, we consider why the backward difference
succeeds while the forward time step fails.

The general solution of the wave equation [Equation (1.5)] is expressed as

f(z, t) = F(z — ct), (1.24)
where F' denotes an arbitrary function. Thus, we can derive the relation,
flz, t + At) = f(z — cAt, t). (1.25)
On the other hand, Equation (1.8) is equivalent to

cAt

flz, t + At) = (1—%) f(x,t)—I—A—xf(a:—Aa:,t). (1.26)
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Figure 1.8: Comparison of numerical solutions obtained by the backward time step. The dotted
curve denotes the initial condition at ¢ = 0. The dashed curve denotes the solution at ¢ = 10
obtained with At = 0.08. The dashed curve and dash-dotted curves denote the solutions
obtained with At = 0.04 and 0.101, respectively.

Equation (1.26) can be derived from Equation (1.25) by interpolating f from the values at two
adjacent points. When the CFL number is larger than unity, Equation (1.26) is derived not
by interpolation but by extrapolation. It is not a coincidence that the condition for stability
coincides with the condition for Equation (1.26) to be derived by interpolation.

Similarly, Equation (1.7) is equivalent to

flz, t + At) = (14—%) f(x,t)—%f(x—kA:r,t). (1.27)
Equation (1.27) can be derived from Equation (1.25) by extrapolation. Interpolation is modest
and gives a stable approximate solution, whereas extrapolation occasionally gives an unstable
solution.

We have learned that inadequate difference schemes give solutions that show unnatural
oscillations. The absence of such an oscillation of numerical origin is often measured by the
time evolution of the total variation in numerical hydrodynamics. When the total variation
diminishes with time for any initial condition, the solution is ensured to contain no oscillation
of the numerical origin. This condition is expressed as

> fisrner = Fimrl < ) 1 fivim — Fiml, (1.28)
i i

and is referred to as the TVD condition, or total variation diminishing condition. Although it
may appear that the total variation should diminish, Equation (1.28) means that

i/ 5

dm] <0, (1.29)
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because

0
E |[fi+1n — fiml =~ /’8_170 dz . (1.30)
J

The left-hand side of Equation (1.29) vanishes in the exact solution. The TVD condition does
not require reduction of the total variation. In the same way that the von Neumann stability
analysis requires the wave amplitude not to grow, the TVD condition requires the total variation
not to grow. The error is smaller when the decrease in the total variation is smaller.

Here, we consider the case in which the propagation speed, ¢, is negative. When the propa-
gation speed is reversed, the forward difference and backward difference exchange stabilities, as
mentioned in §1.2. When ¢ < 0, the backward difference is unstable and the forward difference
is stable in the range —1 < ¢At/Axz < 0. The stability criterion is then generalized as follows.

The numerical solution is stable when the spatial derivative is replaced by the back-
ward difference with respect to the wave propagation and the CFL number is in the
range |c|At/Azx.

This criterion is valid irrespective of the sign of the propagation speed. The direction opposite
to wave propagation corresponds to the upwind direction. Thus, the difference scheme given by
Equation (1.8) is called the first-order upwind scheme, rather than the backward difference.

1.4 Nonlinear Wave Equation

In this section, as an example of a nonlinear wave equation, we study the Burgers equation,

of of _
o 12 =0 (1.31)

The Burgers equation is the same as Equation (1.5) except that the propagation speed c is
replaced with f. Before discussing the numerical method used to solve the equation, we examine
the mathematical properties.

First, we examine the case in which f is nearly constant and is expressed as follows:

[z, t) = fo+ filz, 1), (1.32)
where
[l < 1fol- (1.33)

Substituting Equation (1.32) into Equation (1.31) and neglecting a small second-order quantity,
we obtain the following linearized equation:

oh
ot

of1

— = 0. 1.34
5 = 0 (1.34)

+ fo

If we substitute fy for ¢, we obtain Equation (1.5). The wave amplitude coincides with the
propagation speed in the Burgers equation.
Equation (1.31) has a special solution,

r —a

F=5—

4This statement is valid even when c¢ is not constant.

(1.35)
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where a and b are arbitrary constants. The value of f is always zero at * = a in this special
solution, which is not surprising since the propagation speed is zero at this location. Note the
change in the spatial derivative, 0f/0z. In the range ¢ > b, it is positive and decreases with
time, and in the range ¢ < b, it is negative and increases with time.

Equation (1.35) may not be valid at ¢t = b, because the value f diverges. In order to consider
the validity, we consider the initial condition

-1 (xz>1)
f =% (-1l<z<]1) (1.36)
1 (z<-1),

at ¢ = 0. The solution is expressed as

-1 (x >1—1)
T (cl4t<a<l—t

f = , (1.37)

t—1
1 (x < —1+1t)

for the period ¢ < 1. At t = 1, the gradient, df/0z, diverges at « = 0 and the value of f
becomes indefinite. Thus, the differential equation has no rigorous solution after this because
the differential is already infinite. Still we can obtain a unique solution to the equation, as will
be shown later. Equation (1.31) is equivalent to

af o (f*\ _
= T 32 <?> = 0. (1.38)

Integrating Equation (1.38), we obtain

b 271b
%/ fdr + [%] = 0. (1.39)

a

When the function f satisfies Equation (1.39) for an arbitrary interval a < x < b, it is a weak
solution. While any solution of Equation (1.31) satisfies Equation (1.39), the reverse is not true.
A function f may satisfy Equation (1.39), even when the gradient is indefinite at some points
and hence it is not a solution of Equation (1.31). In fact, the function,

[ = {_1 (®>0) (1.40)

satisfies Equation (1.39) in the period ¢ > 1 and continues to Equation (1.32) at t = 1. Thus,
Equation (1.40) is a weak solution of Equation (1.31).

The value of f jumps from 1 to —1 at z = 0 in Equation (1.40). This jump is similar to
the shock wave that appears in hydrodynamics. The density gradient and velocity gradient are
very steep at the shock front, and sophisticated mathematics are required to handle an infinitely
large quantity. Remember that the divergence apparently disappears in Equation (1.38). A
similar feature is seen in Gauss’s law of electromagnetism. The divergence seems to disappear
in the integral form. In other words, the amount of divergence is evaluated correctly. Thus, the
integral form is also used when we derive the numerical solution of Equation (1.31). 5

®The integral form is also used in the finite element method.
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Equation 1.38 is often referred to as the conservation form of the Burgers equation because
it denotes conservation of f. Similarly, we can rewrite Equation (1.5) in conservation form as
follows:

af 0

Then, we have
o2 2
f],n - fy—l,n

fim+1 — fin 2 2
’ : — 1.42
At T Az 0, (1.42)

which gives us an upwind scheme for f > 0, and

; ; firrn®  fin?
jnt1 — fin 2 2
=0 1.43
At * Az ’ (1.43)

which gives us an upwind scheme for f < 0. Since the wave propagation velocity is constant in
Equation 1.5, either the forward difference is upwind everywhere or the backward difference is
upwind everywhere. However, the propagation speed depends on f and accordingly changes its
sign with time and place in the Burgers equation. Thus, we need to switch the forward difference
and backward difference so that the scheme is upwind. Although the if clause can manage the
switch both in Fortran and in C, we want to avoid the if clause for the following two reasons.
First, the if clause makes a computer program more complex. Second, the if clause slows the
computation speed appreciably. To avoid this, we rewrite Equations (1.42) and (1.43) as follows:

— F¥

fjn+1 - fjn F;+1/2n ji—1/2n
: : : — = 0, 1.44
N Az ' (1.44)
where
* _ 1 fj+1,n2 fj,n2
j+i/2n T 9 9 + 2
1| fj+1/2,m + Fiz1/2.n]
o TR (fiaan = i) - (1.45)
The value of F;+1/2,n coincides with either fj+17n2/2 or fj,n2/2 depending on the sign of fji1, +
fjn- When fji1, + fin > 0, Equations (1.44) and (1.45) are equivalent to Equation (1.42).
When fj11, + fjn < 0, they are equivalent to Equation (1.43). The variable, F;+1/2 ,» 15 called

the numerical flux and denotes the flux at the midpoint, z = (241 + z;)/2.
Comparison of Equations (1.44) and (1.39) indicates that the variable, f;,, should be defined
as
1 x; + Ax/2
fim = Ao /a:jAac/z f(z, t,) dzx. (1.46)
This definition states that the variable f;, denotes the average of f(z, t,) in the cell z; —
Az/2 < x < z; + Ax/2. In other words, the variable f;, denotes the cell average, and the
spatial distance, Ax, denotes the cell width.

Figure 1.9 shows a numerical solution of the Burgers equation obtained by the upwind
scheme. This solution has no unnatural oscillation and is an acceptable solution. The error is
appreciable near x = ¢ — 1 and 1 — ¢. The gradient, 0f/0z, changes continuously, although it
should change discontinuously at x = ¢ — 1 and 1 — ¢. This numerical error is similar to that
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Figure 1.9: A numerical solution of the Burgers equation obtained by the upwind scheme. The
initial value is given by Equation (1.40) at ¢t = 0. The solid curves denote the solutions at ¢ = 0,
0.32 , and 0.64. The grid spacing and time step are taken to be Az = 0.1 and At = 0.08 in
the upper panel and are taken to be Az = 0.01 and At = 0.008 in the lower panel.
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seen in the solution of the linear wave equation. The grid spacing, Az, is 10 times smaller in
the lower panel than in the upper panel. Thus, the resolution is higher and the solution is more
accurate.

The next example shows the propagation of a shock wave in the Burgers equation. The
initial condition is expressed as

1 (x < —1)
f=%-2 (-1<z<0). (1.47)
0 (x > 0)
The solution is expressed as
1 (z < ~1+1¢)
= 71ft (—1+t <z <0), (1.48)
0 (x > 0)

for0 < t <1, and

1 @ <t2 172
/= {0 (z > t/2 —1/2) (1.49)

for ¢ > 1. The latter solution is a weak solution, i.e., it satisfies Equation (1.39) rather than
Equation (1.31). Figure 1.10 shows the numerical solution of this problem solved by the upwind
scheme. The grid spacing is taken to be rather large (Az = 0.1) so that the error is easy to
read. Thus, the shock front is not very sharp but keeps its form sharp. Remember that the
wave front becomes less sharp in the numerical solution of the linear wave equation, as shown in
Figure 1.7. On the other hand, the gradient becomes steeper in the Burgers equation when it is
negative. The shock front maintains its sharpness due to the physical steepening. The asterisks
denote positions at which the value, f, is evaluated in Figure 1.10. There is only one point in
the transition region of 0.1 < f < 0.9. Thus, the numerical solution is regarded as capturing
the shock front with one point. Since the solution has no unnatural oscillation near the shock
front, we call this scheme a shock capturing scheme.

Next, we examine the case in which the gradient d0f/dz is positive. Figure 1.11 shows the
solution for which the initial condition is given by

-1 (z < -1)
=192 (-l<z<1). (1.50)
1 (x>1)

Although the grid spacing is Az = 0.1 both in the upper and lower panels, the value of f is
evaluated at x = j Az in the upper panel and at x = (j + 1/2) Az in the lower panel. Note
the appreciable difference between the solutions around x = 0. The exact solution is

-1 (x < —=1-1)

il (cl—t<a<1+t), (1.51)

t
1 (z > 1+1)

f=

for t > 0. The gradient 0f/0x decreases with time in the exact solution and in the upper panel
but maintains its initial value in the lower panel. This odd feature is called expansion shock and



1.5. UPWIND SCHEME FOR THE HYDRODYNAMICAL EQUATIONS 19

15[ ]
[ t=0,1.6,3,2,4.8,6.4,8.0 ]

1.0 —

-~ 05— —
0.0 SRk

L Ax=0.1 ]

-05L ‘ ‘ ]

2 0 2 4

Figure 1.10: A numerical solution of the Burgers equation obtained by the upwind scheme. The
grid spacing is taken to be Az = 0.1.

occurs due to the erroneous evaluation of the numerical flux at x = 0 in the lower panel. The
fluxis F = f2/2 = 0 at # = 0 in the exact solution, while the numerical flux is not (F* # 0)
in the lower panel.

Expansion shock is avoided in the upper panel because the numerical flux is not evaluated
at = 0 but at x = +Ax/2. The expansion shock can be avoided by another means. If we
replace Equation (1.45) with

P = 3 (285 4 20) - Bl - ), (152

|fj,n +fj,n| |fj+1,n +fj7n| > e
Al = 2 2 =°).
€ (otherwise)

£ = max (0, w> , (1.54)

then the solution has no expansion shock. This modification changes the numerical flux only
when fj11,, > fjn. Thus, the solutions shown in Figures 1.9 and 1.10 are not affected by this
modification. We often refer to this procedure as the addition of the entropy condition.

1.5 Upwind Scheme for the Hydrodynamical Equations

This section deals with the hydrodynamical equations. First, we consider the simplest problem,
a one-dimensional flow, and show that the hydrodynamical equations are a system of wave
equations.
The mass conservation is described as
ap 0

= + 5= (pv) = 0, (1.55)
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t=0.0,0.32, 0.64

N

f

t=0.0, 0.32, 0.64

N

Figure 1.11: Numerical solutions of the Burgers equation. The upwind scheme is used both in the
upper and lower panels. The initial condition and the grid spacing are the same. Nevertheless,
the solutions are appreciably different. The value of f is evaluated at x; = jAx in the upper

panel and is evaluated at z; = (j + 1/2) Az in the lower panel.
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Figure 1.12: Numerical solution obtained with the addition of the entropy condition. The grid
spacing and initial condition are the same as those in the lower panel of Figure 1.11. The
expansion shock is removed by the addition of the entropy condition.

where p and v denote the density and velocity in the z-direction, respectively. The equation of
motion is expressed as

Dv n oP

Dt ox
where P denotes the pressure. Here, the symbol D/Dt denotes the time Lagrangian time
derivative and is given by 0/t + v d/0x. Thus, Equation (1.56) is rewritten as

=0, (1.56)

ov ov oP

Although the pressure (P) is generally a function of density and temperature (T'), for simplicity,
we herein assume that the pressure depends solely on the density. ¢ For later convenience, we

define the speed of sound as 7
a = _ccliP . (1.58)
\/ 0

LIS S/ Y (1.59)
ot oz oz

5When the pressure is a function of the density, the fluid is defined to be barotropic. This is a good approx-
imation when heating and cooling are negligible and, accordingly, the entropy is constant with respect to time
and space. This is also a good approximation when the temperature is maintained constant.

"When a gas is thermodynamically stable, the quantity under the square root is positive, dP/dp. If the pressure
decreases with increasing density, the the gas is further compressed and the density increases further. Thus, the
gas is thermodynamically unstable. When dP/dp < 0, the gas separates into two phases, i.e., high-density liquid
and low-density gas.

Then, Equation (1.57) is rewritten as
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The sum of Equation (1.59) and Equation (1.55) multiplied by a/p yields

a 0p v a dp ov\
-— 4+ — + (v+a) (;a_x+a_x>_0' (1.60)

This equation is similar to the linear wave equation and the Burgers equation, and is equivalent
to

0J oJy
W + (U +G)E = 0, (1.61)
where
Jp = /%dp + v, (1.62)

Equation 1.61 is quite similar to the Burgers equation. Similarly, we obtain

oJ_ aJ_ ‘
W + (U — CL)E = 0, (163)

where

J. = /gdp — v (1.64)
p

from Equations (1.55) and (1.59). The hydrodynamical equations are equivalent to Equations
(1.61) and (1.63) when the flow is one-dimensional and barotropic. ®

Next, we examine Equations (1.61) and (1.63). Equation (1.61) demonstrates that a hy-
drodynamical wave propagates with v + a. Since the phase velocity is the sum of the flow
velocity (v) and speed of sound (a), the wave propagates faster than the flow. Thus, the symbol
J4 denotes the amplitude of the wave that propagates toward the right, i.e., in the direction
of increasing x. On the other hand, the symbol J_ denotes the amplitude of the wave that
propagates toward the left. In mathematical terminology, the characteristic speed is identical
to the phase velocity. The wave amplitudes, Jy and J_, are referred to as Riemann invariants
in mathematics.

The velocity and density are expressed as a function of the two Riemann invariants. The
velocity is proportional to the difference of the Riemann invariants, v = (Jy — J_)/2. Thus,
the velocity change contains two components that propagate at speeds of v + a and v — a.
Similarly, the density distribution has two components.

In the previous sections, we learned that we need to use either the backward difference or
the forward difference, depending on the sign of the propagation speed, when we solve a wave
equation. When the speed of sound (a) is larger than the absolute value of the flow velocity
(Jv]), the two characteristic speeds have different signs. Thus, neither the forward difference
nor the backward difference can treat one of the two components properly. This means that
neither the forward difference nor the backward difference succeeds in solving Equations (1.55)
and (1.56). On the other hand, Equations (1.61) and (1.63) describe only one wave component
and so can be solved numerically either by the forward difference or by the backward difference.
Thus, we have rewritten Equations (1.55) and (1.56) to obtain Equations (1.61) and (1.63).

Roe (1981) proposed a numerical scheme in which hydrodynamical equations are decomposed
into components, and in which each component equation is solved with the upwind difference.
This scheme is widely used because it is relatively easy to implement and gives a good numerical

8This argument is presented by Sakashita and Ikeuchi (1996). Their textbook entitled “Uchuu Ryuutai Riki-
gaku” discusses the mathematical properties of the hydrodynamical equations in greater detail.
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solution. This scheme is now applied to the magnetohydrodynamical equations. Although a
number of good schemes exist, we herein consider only this scheme.
Roe’s original scheme is for an ideal gas. Here, the energy conservation is expressed as

0 0
— (pE —(pHv) = 0, 1.
2 (0B) + va-(pHv) = 0, (1.65)
where
02
FE = 5 + €, (1.66)
P
H=F+ —. (1.67)
p

where E and ¢ denote the specific energy of the fluid and the specific energy of the internal
energy, respectively. Thus, H denotes the sum of the specific enthalpy and specific kinetic
energy. The specific energy of the fluid and the sum of the specific enthalpy and specific kinetic
energy are evaluated to be

v? 1 P
E = — _—— 1.68
st o1, (1.68)
and )
v v P
H = — _ 1.69
> t o1, (1.69)

respectively, for an ideal gas, where v denotes the ratio of specific heat at constant pressure and
constant volume, respectively. The dependent variables are expressed as a function of p, v, and
E. The pressure is evaluated to be

02
P=(y—-1)p <E — E) . (1.70)
Similarly, we obtain
v? v?
H = E - — —. 1.71
(-%)+ % (1.7)

We have Equations (1.55), (1.57), and (1.65) and three unknowns, p, v, and E. Therefore, we
can compute the change in the density and the change in the velocity by solving these equations
simultaneously with the appropriate initial and boundary conditions.

For later convenience, we rewrite Equation (1.57) as follows:

2wy + L(ow? + Py = 0, (1.72)

ot %(

using Equation (1.55). Equation (1.72), like Equations (1.55) and (1.65), is written in conser-
vation form. These equations can be expressed in vector form as follows:

ou oF

U, P
U = Uz | = pv |, (174)
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I pv
F=|R|=|p+P]|. (1.75)
F3 pHv

In the following, we refer to U and F' as the state vector and the flux vector, respectively. This
expression is useful in deriving the phase velocities of hydrodynamical waves. The flux vector is
expressed as a function of the state vector, i.e.,

Us
3 — 7 (Up)?
F = 1, T~ 12]3 . (1.76)
Us (Us)
22 (v -1
g, |7V = (= D5
We can then rewrite Equation (1.73) as
ou ou
— A— =0, 1.
ot + 7 0, (1.77)
where
oF
A = — 1.78
50 (1.78)
[ 0 1 0
1 Uy 2 Us
"y —3) (22 (v —3) 2 1
_ | s0-9(5) h-ne
yU2U3 Us s 3 Us vUs
_ ) (22 I3 2y oy (22 1~z
ERGAA <U1> o 20 Y\m) m
[ 0 1 0
3 —7
LS 17
(7;12—H>v H—(y—-1)u? v

Comparison of Equations (1.77) and (1.5) reveals that the matrix A denotes the velocity of the
wave.
From the previous sections, we have

Ujn1 —Ujn n Finvi2 = Fin1y2 — 0, (1.80)
At Ax
N 1
j+1/2;m 9 [Fj+1,71 + Fjn — Al (Uj-i-l,n - Uj,n)] : (1.81)

One remaining problem is the evaluation of |A|, which is evaluated as follows. The velocity
matrix has eigenvalues \; and right eigenvectors r;.

Ari = )\i T, ( )
Al = v —a, ( )
Ao = v, (1.84)
A3 = v+ a, ( )
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1
r = v—a |,
H — va
1
v
Ty = ,
i v
2
1
r3y = v+ a ,
H + va
where
P
= 22,
p
02
= -l - =
CERCEES
Using the matrix,
R - (T17 T27 Tg)
1 1 1
o v — a v v+ a
= o2 ,
H — va 5 H + va
we can diagonalize the velocity matrix as follows
v—a 0 0
A=R| 0 v o0 |R"
0 0 v+a
The matrix, R™!, is expressed as
v? va n 1
2 Ty -1 R
_ —1 2
R 1 = i 5 — 22 + a 2v —2
2a v—1
v? va a
- — v — 1
2 v—1 v—1
= L
4
= |
£3

The vectors £1, €2, and £3 are left eigenvectors because

;A = \b;.

25

(1.86)

(1.87)

(1.88)

(1.89)

(1.90)

(1.91)

(1.92)

(1.93)

(1.94)

(1.95)

(1.96)

(1.97)
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The eigenvalues, the diagonal elements of the central matrix in Equation (1.93), indicate the
propagation speed of the hydrodynamical waves. Thus, we can evaluate |A| to be

lv —a] 0O 0
|Al = R 0 ] 0 L. (1.98)
0 0 |v+ qa

The eigenvalues v + a and v — a denote the phase velocities of sound waves propagating toward
the right and toward the left, respectively. These waves also appear in a barotropic fluid.
The other wave, the phase velocity of which coincides with the flow velocity, disappears in a
barotropic fluid.

Equation (1.98) should be evaluated from U 1; , and U ., i.e., from an average state vector,
as in the case of the Burgers equation. Roe proposed evaluation of R, L, \; (i = 1, 2, 3) by

the following averages:
5 VPVt /P11 (1.99)
N
i — \/p_]H] + \/pj+1Hj+1’ (1100)
Vi + P

a = (y—-1) <H — ”—5) : (1.101)

Although computing | A| may appear difficult, the right-hand side of Equation (1.81) can be
rewritten as

i 3
" 1
a1z = 5 |Fietn + Fin = D [l wy rk] , (1.102)
L k=1
where
[P — P 1
W= o5 _7j a L= p (i1 — ”j)_ ; (1.103)
P — P
wy = pir1— p — —— (—12—Ja (1.104)
1 [Py — P T
ws = 5 _73 a S+ p (v — Uj)_ ; (1.105)
because )
Ujpr — U; = > wjry, (1.106)
k=1

for any U; and U j4;.
Here, we consider a wave having a phase velocity of v. As shown in Equation (1.104), the
amplitude is wo and is evaluated to be

oP
wy (g>p ($j+1 — 85) (1.107)
because
oP oP
P = — — 1.1
’ (8p>s " (35>p68 (1-108)

oP
_ 2
= a“0p + (8s)p ds, (1.109)
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where s denotes the specific entropy. This means that the wave amplitude is proportional to the
entropy difference. Thus, the wave is referred to as the entropy wave. When only the entropy
wave exists, the pressure and velocity are uniform and the temperature changes. A cold front,
in which the temperature drops appreciably, is an example of an entropy wave. °

As in the case of the Burgers equation, the characteristic speeds should be modified as

M| = max(v — al, e1), (1.110)

g1 = max(/\j+1’1—/\j,1, 0), (1111)
P.

Na o= v — | 2L, (1.112)
Pj

3| = max(|v + al, e3), (1.113)

g3 = max(Ajt13 — A3, 0), (1.114)
P.

Na = vy 22 (1.115)
Pj

in order to avoid the expansion shock. Entropy correction is not required for the entropy wave
(A2). Entropy waves never evolve into an expansion shock.

Figures 1.13 and 1.14 show numerical examples in which a shock tube problem is solved by
the Roe scheme. Figures 1.13 and 1.14 confirm that the Roe scheme can solve the hydrody-
namical equations without difficulty, even when the initial density and pressure distributions are
discontinuous. The figures show no unnatural oscillation around the shock wave.

Next, we evaluate the numerical error by comparing the solutions for different values of
Ax. Figure 1.15 compares solutions obtained with different values of Az. The initial condition
is the same as that of the solution shown in Figures 1.13 and 1.14. The dash-dotted curve
denotes the density distribution obtained with Axz = 0.1, while the solid and dashed curves
denote those obtained with Az = 0.001 and 0.01, respectively. All of the curves denote the
density distribution at ¢ = 0.8. As Ax decreases, the density decreases gradually in the range
—1.04 < x <, 0.03 and approaches the distribution having discontinuities at * = 0.78 and
1.43. These features indicate that the numerical solution obtained by the Roe scheme converges
to the exact solution in the limit of infinitesimal Axz. Convergence is an important issue, and a
stable scheme is of limited value if the error remains too high.

The speed of convergence depends on the position. The density and temperature change in
the rarefaction wave, at the contact discontinuity (z = 0.78), and at the shock front (z = 1.43).
As demonstrated in Figure 1.15, the convergence is fast at the shock front but is very slow at the
contact discontinuity. The dashed curve (Az = 0.01) is a fairly good solution around the shock
front, while the contact discontinuity is not sharp enough, even in the solution with Az = 0.001.
The speed of convergence depends little on the initial condition. The contact discontinuity is
always less sharp than the shock front. The change in temperature becomes vague, although it
should change sharply at the contact discontinuity.

Figure 1.16 shows the speed of convergence quantitatively. The abscissa denotes the grid
spacing Az, while the ordinate denotes the numerical errors in the density (solid curve) and
velocity (dashed curve) at (z, t) = (—0.75, 0.8). The time step is taken to be At = 0.5 Az so
that the CFL number is the same. The errors are proportional to the grid spacing, i.e., they are
of the first order. This is because the truncation error is proportional to Az? in the first-order

9The entropy is given by s = log P — « log p for an ideal fluid with specific heat ratio 4. The pressure is
then expressed as P = e p”.
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Figure 1.13: A numerical solution obtained with the Roe scheme. The initial density and
pressure are p = 0.1 and P = 0.05 in the region x > 0 and are p = 1.0 and P = 1.0 in the
region x < 0. The initial velocity is v = 0 over the entire region. The specific heat ratio is set
to be v = 5/3. The grid spacing is Az = 0.1 and the time step is At = 0.04. The upper panel
shows the density, and the lower panel shows the velocity.
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Figure 1.14: A numerical solution obtained with the Roe scheme. The initial density and
pressure are p = 0.1 and P = 0.05 in the region x > 0 and are p = 1.0 and P = 1.0 in the
region x < 0. The initial velocity is v = 0 over the entire region. The grid spacing is Az = 0.1
and the time step is At = 0.04. The upper panel shows the pressure, and the lower panel shows
the temperature.
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Figure 1.15: Comparison of the numerical solutions with different values of Axz. The initial
condition is the same as that of the solution shown in Figures 1.13 and 1.14. The upper and
lower panels show the density and temperature, respectively. The solid curve denotes the solution
obtained with Az = 0.001, and the dashed curve shows the solution obtained with Az = 0.01.
The dash-dotted curve denotes the solution obtained with Ax = 0.1. The time step is taken to
be At = 0.4 Az in all of the solutions.
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Figure 1.16: The errors in the density and velocity are shown as a function of the grid spacing for
the solutions given in Figures 1.13 and 1.14. The errors are evaluated at (z, t) = (—0.75, 0.8).

upwind scheme. The number of time steps required to reach a given t is inversely proportional
to Az because the time step is proportional to Ax. A scheme is of first-order accuracy when
the error is proportional to the grid spacing. A higher-order scheme is explained in the next
section.

The next example gives the solution for the following initial condition:

05, 02) (z < —1)
(0, P) = {(1.0,1.0) (l<a< 1. (1.116)
(0.1, 0.05) (z > 1)

The initial velocity vanishes everywhere (v = 0). The upper and lower panels denote the
density and pressure distributions, respectively, by gray scale and contour. The The density
and pressure are higher in the black regions. The contours radiate from (z, t) = (0, £1) in
the early phase in the diagrams. The contours are straight because the waves have constant
phase velocities. The two rarefaction waves cross each other at ¢ ~ 1. After crossing, the phase
velocities change and the slopes of the contours change. Similar results are obtained when the
initial velocity is not spatially constant, and also when the changes in initial density, velocity
and pressure are more complex. These three types of waves radiate from any point at which the
initial density, velocity, or pressure changes. The waves propagate and cross each other. Thus,
a scheme can solve the hydrodynamical equations for a given initial condition if it can solve a
shock tube problem. Thus, shock tube problems are often used as test problem for numerical
simulation code.

Before proceeding further, we consider why the Roe scheme succeeds in solving the shock
wave. The primary reason is that we have diagonalized the velocity matrix. Equation (1.77)
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Figure 1.17: A test problem in which the initial density and pressure change at two points. The
upper panel denotes the evolution of the density distribution by gray scale and contour, and the
lower panel denotes the evolution of the pressure distribution.
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can be rewritten as

M 00
LA P ) (1.117)
0 0 X/ 9F
where
dJ = LdU, (1.118)

by multiplying the matrix L. The newly defined variables, Ji, Jo, and J3, are Riemann invari-
ants. The multiplications of R and L transform the hydrodynamical equations into a set of
simple wave equations. However, Equations (1.99) — (1.101) also contribute to the success of
the Roe scheme. Thanks to these equations, the relation,

F(Uju) — FU;) = AU — Uj), (1.119)

holds exactly for any given U; and U ;1. This is the virtue of Roe’s averaging. When U; =
Uj+1, the velocity matrix coincides with 0F /0U. Furthermore, Equation (1.101) guarantees
that a? is always positive, and hence all of the phase velocities are real (not complex). These
three conditions are referred to as the U property. If the velocity matrix A fulfills the U property
in a numerical scheme, then the hyperbolic differential equations can be solved by the upwind
scheme and the solution is stable and free from numerical oscillation. Such velocity matrixes have
been found for two-dimensional flows, three-dimensional flows and non-ideal-gas flows. When
a numerical scheme is based on the velocity matrix satisfying the U property, it is generally
referred to as a Roe type scheme, even when it is not derived by Roe. A Roe type scheme is also
obtained for the magnetohydrodynamical equations. Some numerical schemes are classified as
Roe type schemes by the developer even when they do not satisfy the U property. These schemes
provide relatively good solutions, although they are often unstable with respect to strong shock
waves.

The velocity matrix that satisfies the U property for an arbitrary equation of state was
obtained by Nobuta and Hanawa (1999, ApJ, vol. 510, p. 614). They applied this scheme to
a gas in which black body radiation was taken into account, and the scheme was shown to
be applicable to degenerate electron gas. Eulderink and Mellema (1993, A&AS, 110, p. 587)
obtained the velocity matrix for special relativistic hydrodynamical equations. Their velocity
matrix satisfies the U property. A Roe type scheme was derived for the magnetohydrodynamical
equations for the first time by Brio and Wu (1988, J. Comput. Phys., 75, p. 400). Their velocity
matrix does not satisfy the U property, except for v = 2. The velocity matrix satisfying the U
property for any v was presented by Cargo and Gallice (1997, J. Comput. Phys., 136, 446).

1.6 Higher-order Accuracy

In the previous section, a numerical method by which to solve one-dimensional hydrodynamical
equations was described. In this section, we introduce a method by which to obtain a solution of
higher-order accuracy. Numerical methods used to solve two-dimensional and three-dimensional
hydrodynamical equations are shown in the next section.

The upwind scheme, which was shown in the previous section, is of the first-order in space
and time. As the grid spacing and time step are taken to be smaller, the truncation error is
smaller. However, an enormous computation time is required to obtain an accurate solution
with the first-order scheme. Most numerical simulations employ a second-order or even higher-
order scheme to reduce the computation time. In this section, we introduce the Monotone
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Upstream-centered Scheme for Conservation Laws (MUSCL) to achieve second-order accuracy.
Since MUSCL is rather difficult, easier methods may be desired. Thus, we first understand
necessity of a rather complicated method.

First, we consider the one-dimensional wave equation to simplify the problem. Equation
(1.9), the central difference, is of second-order accuracy because the error is a small third-order
quantity. However, the solution obtained by Equation (1.9) is unstable and shows unnatural
oscillations around a discontinuity. Is it possible to realize a higher-order accuracy while main-
taining stability and avoiding unnatural oscillations? We shall examine the case in which the
solution of Equation (1.5) at step n + 1 should be a linear combination of the solution at step
n, i.e.,

fint1 = > Bi fishm- (1.120)
k

This expression includes the forward difference, the backward difference, and the central differ-
ence, which are all shown in Section 1.2. If Equation (1.120) denotes the backward difference,
then the coefficients, By, are given by

cAt
By = %‘t (k= —1) - (1.121)
x
0 (otherwise)

Similarly, for the central difference scheme, they are given by

/

1 (k =0)
B cAt (k= 1)
Br = { APT (1.122)
(k = 1)
2Ax
0 (otherwise)

By arranging By, we can create an infinite number of schemes. The Godunov theorem states
that no scheme expressed by Equation (1.120) can achieve second- or higher-order accuracy
without unnatural numerical oscillations.

Godunov theorem: Any second- or higher-order scheme expressed by Equation
(1.120) cannot achieve monotonicity of the solution.

The gradient 0f /0 changes its sign in the region in which an unnatural numerical oscillation
arises. However, the gradient should remain positive if the initial gradient is positive because
the wave form should keep the original sign. In other words, the wave amplitude should always
increase monotonically with increasing z if the initial amplitude increases monotonically with
increasing x. It is desired that the monotonicity be preserved in a numerical solution. The
monotonicity is preserved if and only if

B, > 0. (1.123)

The proof of this equation is not easy. First, we prove that the monotonicity is preserved if
Equation (1.123) holds. Equation (1.120) yields

fisrmar = fim = Y Be(fisiskn — fithn) - (1.124)
k
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If B, > 0and fj11,, — fjn > 0 for any given k at ¢t = nAt, then fj11 41 — fjn+1 = 0. The
same is true for fj11, — fjn < 0. Thus, the monotonicity of function f is preserved if By, > 0.

The necessity of By > 0 for maintaining monotonicity is proven by reduction to absurdity.
Suppose B, < 0 for a given m. If the initial condition is given by

= {1070 (1125
we obtain
femitmit = fommir = > Br(femiin — fromn) (1.126)
= Bkm (fim — fon) (1.127)
> 0. (1.128)

This solution violates monotonicity, because the function f;, increases monotonically with j
while fj,4+1 does not. Thus, we have proven that the monotonicity is preserved if and only if
B > 0.

Next, we examine the truncation error using the Taylor series. Taylor series expansion gives

om f (At)™
fim1 = fim + Z S (1.129)
which is rewritten as
+ Z O"f (cAi)” 1.130
fjn—l—l = f]n amm ml 3 ( - )
because om om
— = (=) —= 1.131
o = (T 5 (1.131)
is derived from Equation (1.5). Another Taylor series expansion gives
fitkm = fim + Z (kAz)™ (1.132)

Comparison of Equations (1.132) and (1.130) gives

B, =1 (1.133)
k

> k"Bp = (-%)m. (1.134)

k

from the condition that Equation (1.134) gives the condition that the scheme is of m-th order
accuracy. We can easily confirm that the backward difference satisfies Equations (1.133) and
(1.134) for m = 1 but not for m = 2. The central difference satisfies Equation (1.134) for
m < 2, although it does not guarantee the monotonicity of the solution because B; < 0.

We obtain )
At cAt
k2 — 2k C— —

B, =0, (1.135)
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from the sum of Equation 1.133 multiplied by (cAt/Ax)?, Equation (1.134) for m = 1 multiplied
by 2 (cAt/Az), and Equation (1.134) for m = 2. Equation (1.135) is rewritten as

>y (k - %‘;)2 B, = 0. (1.136)

k

If By, > 0 for any k, Equation (1.136) does not hold except when cAt/Ax is an integer. Thus,
Equations (1.133) and (1.134) for m = 1 and 2 do not hold simultaneously as long as By > 0
for any k except At.

The Godunov theorem tells us that conservation of monotonicity is a tough constraint.
However, monotonicity is violated and unnatural oscillations arise only in a limited region. As
shown in Section 1.2, the central difference causes numerical oscillation only in the region in
which the value of f changes drastically. Thus, to avoid unnatural oscillations, we need care
about monotonicity only in this region. When the value of f changes drastically, the Taylor
series does not provide a good approximation and second-order accuracy is not important in
this case. Second-order accuracy has no value in particular at the shock front because the
density and velocity are discontinuous there. This allows for a balance between monotonicity
and second-order accuracy to be struck. Second-order accuracy is realized almost everywhere,
except in small regions in which the physical quantities change drastically.

Next, we reexamine second-order accuracy, paying attention to the numerical flux. Substi-
tuting the numerical flux defined as

j n + in
Fij1jom = ¢ <%> , (1.137)

into Equation (1.44), we obtain the central difference. The numerical flux denotes the flux at
x = (zj41 + x;)/2, as is indicated by the subscripts. The Taylor series expansion of the right-
hand side of Equation (1.137) is of first-order accuracy when expanded in the Taylor series.
On the other hand, the numerical flux is evaluated either at * = z; or ;41 in the backward
difference and the forward difference. Thus, the truncation error is larger.

We next compare the accuracy of the first-order upwind scheme and that of the central
difference using Figure 1.18. Suppose that the initial condition is given by f;. The function
is implicitly assumed to be a step function (dashed line) in the upwind scheme because the
numerical flux at z = z;,/5 is evaluated by either f; or f;11. On the other hand, the function
is implicitly assumed to be a stepwise linear function (solid curve) in the central difference,
because the numerical flux is evaluated by the average of f; and f;41. If we can approximate the
initial condition not by the simple linear interpolation, but by another stepwise linear function,
we will be able to achieve first-order accuracy in the numerical flux and second-order accuracy
in the solution.

Fortunately, in addition to for the simple linear interpolation, we have several ways to ap-
proximate a function by a stepwise function. For example, extrapolating from the left-hand
side,

1
L = fi+ 50— fim) (1.138)

_ 3= Jim - Ji1 (1.139)
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Figure 1.18: Example of simple linear interpolation.

is of first-order accuracy. Similarly, extrapolating from the right-hand side,

1
fﬁ‘)l/2 = Jirr = 5 (2 = fi+1) (1.140)
3fiv1 — firo

1.141
2 Y ( )

is of first-order accuracy. Here, f](i)l /2 and f](_I:)l /2 provide a solution of second- order accuracy

if used in the evaluation of the numerical flux.

The use of fj(i)l /2 and f;_ﬁ /2 requires careful consideration. Figure 1.19 shows an example
of extrapolation by Equations (1.139) and (1.141). The initial data are the same as those shown
in Figure 1.18. Unnatural irregularities appear around the local minima and local maxima in
the extrapolation.

It is a natural consequence of the Godunov theorem that the extrapolation violates mono-
tonicity. The Godunov theorem states that the monotonicity is preserved only by the upwind
scheme, i.e., by the step function.

Next, we modify Equation (1.139) to guarantee monotonicity. If we replace Equation (1.139)
with
Ajr12Aj_12 <0

w7 A A
Tisire fi + S92 hin <1, i+l/2 ) (otherwise) ’ (1.142)
2 Aj—l/?
Ajvip = fima — fi, (1.143)
Ajap = fi— fi-1, (1.144)

then the monotonicity problem is resolved. Equation (1.144) is of first-order accuracy only
when the sign of A,/ is the same as that of A;_; 5, i.e., only when the function increases
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Figure 1.19: An example of extrapolation by Equations (1.139) and (1.141). The data are the
same as those of Figure 1.18.

or decreases monotonically in the interval z; 1 < z < zj4;. Otherwise, Equation (1.144) is
approximated by f; because the gradient changes and the function has either a local minimum
or a local maximum in the interval. When the sign of A5 is the same as that of A;_; 5, the
minimum absolute gradient is used for the extrapolation. In most textbooks, Equation (1.142)
is expressed as

A A
L . j—1/2 j+1/2
fifrg =i+ —5— V¥ <Aj1/2> ; (1.145)
0 (r<0)
i) =<r 0O<r<1), (1.146)
1 (r>1)

and ¥ is referred to as the minmod limiter. In short, Equation (1.144) provides a modest
extrapolation. 1°
Similarly, Equation (1.141) is replaced by

AjysppAjprp <0

) (otherwise) (1.147)

AVIEY
Aji1y2

«(R) J+1 A
Tizipe = fiv1 — 7”;1/2 min <1,

Equation (1.147 also gives a modest extrapolation from the right-hand side. When f; < fji1,
we obtain the following inequality:

i < Yy < Iys < B (1.148)

19Tn addition to the minmod limiter, the superbee and other limiters are described by Hirsch (1981).
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Figure 1.20: An example of extrapolation by Equations (1.144) and (1.147). The data are the
same as those shown in Figure 1.18.

On the other hand, we obtain the following inequality:

5> 08y > % > o, (1.149)

when f; > f;j41. The monotonicity is preserved in both cases. Figure 1.20 gives an example
of the stepwise linear function obtained by Equations (1.144) and (1.147), which demonstrates
that this stepw1se hnear extrapolation preserves the monotonicity.

Using f +1 /2 and f i1 /2, we can construct the numerical flux as follows:

¢ () o (Lie — 5
* * J J
j+1/2 9 <fj+1/2 + fg+1/2) 9 9 : (1.150)

This numerical flux is constructed from the data of the upwind side and is of first-order accuracy.
This numerical flux provides second-order accuracy in space.

Second-order accuracy in time is achieved by a two-stage method such as the predictor-
corrector method for the ordinary differential equation. Suppose that we want to obtain the
function f at ¢t = ty + At from that at ¢ = {y. In this case, we obtain the function f at
t = to + At/2 at the first stage. At the second stage, we obtain the function f at t = ¢ty + At
using the numerical flux at t = ¢ty + A/2.

The following is the procedure used to solve the Burgers equation with second-order accuracy
in space and time.

(1) Extrapolate the function while preserving the monotonicity.

fim (Ajr12nAj—1/2m < 0)
f*(L) _

) = A A
J+1/2mn fin + —— = 21/2’n min <1, ‘ﬁﬁi;zn
J— T

. (1.151)

(otherwise)
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) fi+in A A (Aj1/2,n Ajisjom < 0) 15
fivram = fi+in — SIS g (1, .M (otherwise) , (1152)
2 Aj+3/2,n
Ajrjom = fim — fi-1n (1.153)
Ajiiom = fi+in — fims (1.154)
Aj+3/2,n = fitro;m — fixrim. (1.155)
(2) Compute the numerical flux from f P12 and f]+1/2 -
(L) )2 (R) )2
. 1 (fj+1/2,n> (fj+1/2,n>
itl/2n = 5 5 + 5
AL () “(R)
9 (fj+1/2,n - j+1/2,n> ) (1.156)
*(L) *(R) *(L) *(R)
|f j+1/2,n f+1/2n‘ |fj+1/2,n + f+1/2n > ¢
Al = 2 2 - , (1.157)
€ (otherwise)
ff‘(L) _ (B
e — max [0, ZH/20 5 i41/2n ) (1.158)
(3) Obtain f;,11/2 using the numerical flux.
At * *
fimjz = fin + 55— (Fj o~ Foy /M) . (1.159)
(4) Extrapolate f;,41/2 as in step (1).
Jin+1/2
(L) _ A n Ai_1/9m <0
i = A ()
fin+1/2 + —5—"min (1, 7> (otherwise)
’ 2 Aj_1/2.n41/2
Jit1nt1/2
ff(Pln)Q = (Ajr1/2me1/2 Djy3/2ns12 < 0) , (1.161)
J+1/Zn+1/ fi _ 2yj+3/2,n41/2 1 +1/2n+1/2 ! .
/2 = o min {1 e (otherwise)
2 j4+3/2,n+1/2
Aj_1omi12 = fjmrre — fj—tns1/2s (1.162)
Ajvipntie = fjvinse — Finsiy2s (1.163)

Ajisjentre = firent12 — fitint1/2- (1.164)
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(5) Obtain the numerical flux from f P41/2n41 and f +1/2 nilj2 11
«(L) 2 #(R) 2
P 1 (fj+1/2,n+1/2> <fj+1/2,n+1/2>
J+1/2nt1/2 T 5 5 + 5
AL () #(R)
DY (fj+1/2,n+1/2 o fj+1/2,n+1/2) ) (1.165)
1w £ + /7
fi172, n+1/2+f +1/2 nt1/2l J+1/2;n+1/2 j+1/2 n+1/2 > &
Al = 2 -, (1.166)
3 (otherwise)
ff‘(L) _ f*(R)
e = max [0, ZTY/2Znt1/2 5 ARVEUARTEN I (1.167)
6) Obtain f;, using the numerical flux obtained in (5).
‘77
At . .
fim = fin _:c ( j+1/2,n4+1/2 — Fj71/2,n+1/2> : (1.168)

The above procedure is called MUSCL and can be applied to the hydrodynamical equations.
When MUSCL is applied to the hydrodynamical equations, the question arises as to which
variables should be extrapolated. For beginners, we recommend extrapolation of the density,
velocity, and temperature (I' = P/p). Extrapolation of the pressure and extrapolation of
the state variable U may cause difficulty near the shock front. Extrapolation of the Riemann
invariants succeed in solving the magnetohydrodynamical equations (see, Fukuda and Hanawa
1999, AplJ, 517, p. 226). Extrapolation of the Riemann invariants also enables solution of the
hydrodynamical equations. However, the extrapolation of the Riemann solver increases the
computation cost and the complexity of the computation code. Thus, we do not recommend the
extrapolation of the Riemann invariants for beginners.

1.7 Extension to Multi-dimensional Problems

In the previous sections, we restricted ourselves to the consideration of one-dimensional prob-
lems. In this section, we introduce numerical methods for solving the two-dimensional and
three-dimensional hydrodynamical equations. We use Cartesian coordinates in this section.
The use of cylindrical coordinates and spherical coordinates is discussed in Section 1.9.

The hydrodynamical equations for a multi-dimensional problem are expressed as follows:

9 L. () =0, (1.169)
ot
ov 1
5 * Vv + VP =0, (1.170)
a(pE) + V(pvH) = 0. (1.171)

L Although it is omitted here for simplicity, we should take the entropy condition into account, .
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As in the case for the one-dimensional problem, they can be rewritten in conservation form

as follows:

oU  OF, 0G,

E—F ox * oy +
P
pu
pv | .
pw
pE

pu
pu?
PUV
puwW

pHu

pU
pUY
G = | pv?

pUwW
pHv

pw
pwU
pwv
pw?

pHw

=0, (1.172)

(1.173)

(1.174)

(1.175)

(1.176)

Here, u, v, and w denote the z-, y-, and z components of the velocity, respectively. The density
is evaluated as

Pijkn = plx =ilx,y = jAy, 2 = kAz, t = nAt) (1.177)

at the center of the small rectangular box having a volume of Ax x Ay x Az. Similarly, each
component of the velocity, £ and H, is evaluated at the center of the rectangular box. The last
subscript indicates the time, as in the case of the one-dimensional flow. For later convenience,
we use the following notation:

Uijkn = U(x =ilAz,y = jAy, z = kAz, t = nAt). (1.178)
Then the difference equation for a multi-dimensional flow is expressed as
Uijkn+1t = Uijkn Fiipgen = Fipirnn
At Ax
* *
Gi+1/2,kn — Fij—1/2,kn
Azx
H* . — H*.
Jik+1/2,m 4,J,k—1/2,n
; + - =0 1.179
A$ ) ( )

* * * . .
where F,L-+1/2,j,k,n7 G412,k and Hi,j,k+1/2,n denote the numerical fluxes in the z-, y-, and
z-directions, respectively. The numerical fluxes should of course be upwind fluxes.



1.7. EXTENSION TO MULTI-DIMENSIONAL PROBLEMS

43

First, we obtain the numerical flux in the z-direction, F';y /3. Since the state vector
U and the flux vector F' have three components in the one-dimensional problem, the velocity
matrix A has three rows and three columns. Consequently, there exist three eigenvalues, three
right eigenvectors, and three left eigenvectors. The state and flux vectors (U, F, G, and H)
have five components in the three-dimensional hydrodynamical equations. Thus, we have five
characteristic speeds, five right eigenvectors, and five left eigenvectors, which are derived as

follows. First, we express each component of the flux vector as a function of the state:

r UQ
(U2)* + (Us)* + (U)? (Up)?
_1 _
(v ) [U5 U, + U,
UsUs
F = U
UsU,
Uh? + (U + (U
U2U5 U2 + U3 + U4 U2
N lus — “2
o, T [ 5 U, ] U,
The velocity matrix (A = 90F/9U) is then expressed as
[ 0 1
—1
(7 5 ) qg — u2 (3 - ’Y)U
A = —uv v
—uw w
—1
—yuE + (y = ug vE — %(%2 +q)
0 0 0
l-7v (I-7w (y-1)
u 0 0
0 U 0

(1 —y)uww (1 —)uw YU

q:u2—(—v2+w2.

This velocity matrix has five eigenvalues,

Al = u—a,
Ay = u,
A3 = u,
N = u,
As = u + a,

(1.180)

(1.181)

(1.182)

where a denotes the speed of sound as in the case of the case of a one-dimensional flow. The
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corresponding right eigenvectors are expressed as follows:

1
U — a
r = v , (1.188)
w
H — au
0
0
ry = o |, (1.189)
—a
—wa
0
0
ry = a |, (1.190)
0
va
1
U
ry = v, (1.191)
w
4q
2
1
U+ a
rs = v . (1.192)
w
H + au
Similarly, the left eigenvectors are expressed as follows:
1 U 1 /1 bov bow boy
b= [5 (br+5) =3 (5”2“)"7"7’ 5}7 (1.193)
w 1
0y = (—, 0,0, — -, 0> , (1.194)
a c
v 1
by = (— -, 0, —-,0, 0) , (1.195)
a c
w 1
by = (—, 0,0, ——, 0> , (1.196)
a c
£4 = (1 — b17 bgu, bgv, wa, —bg) 5 (1197)
1 U 1 /1 bav bow by
e_—(b— ),— b, — 2, -2 2 1.198
5[21a2(a2u>222' (1.198)
where
qv —1
by = = 1.199
1 9 (12 ’ ( )
—1
by = L. (1.200)
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The right and left eigenvectors are normalized so that
-1y = Ompn - (1.201)

These eigenvalues and eigenvectors are, of course, similar to those for the one-dimensional
hydrodynamical equations. The two eigenvectors, the eigenvalues of which are v & a, are modified
slightly to include the y- and z-components of the velocity. The eigenvalue u is degenerated three
times to obtain two additional eigenvectors. The eigenvector r4 denotes the entropy flow, as in
the one-dimensional hydrodynamical equations. The eigenvectors 7o and r3 denote the shear
flows in which the z- and y-components of the velocity, respectively, change in the z-direction.

If we evaluate the eigenvalues and eigenvectors by the Roe average defined as

i = VPl kWit k + \/m“l’ (1.202)
VPitLjk +/Pijk
. VPRV gk T \/in,j,k, (1.203)
VPit15k T \/Pijk
VP L kWit 1k + \/Pij kWi k ’ (1.204)

w =
VPitLjk T \/Pijk
g = @+ 7+ a0, (1.205)
i VPirtjkHiv1 6 + /PijeHijk (1.206)
VPiriik + \/Pijk ’ '
i = (v 1) (FI - %) , (1.207)
then the velocity matrix satisfies the U property. Thus, the numerical flux is given by
x 1 1
i+1/2.4k = 3 (Fiv1jk + Fijr) — §R|A|L (Uit1,jk — Uijx) - (1.208)

Equation (1.208) is rewritten as

I 5
1
+i/2n = 5 | Fivin + Fin — > Akl wi "'k] ; (1.209)
L k=1
where
1 [Py — P
wo= 52 _% — p (vj41 — Uj):| ; (1.210)
wy = —g (wjp1 — wj) , (1.211)
wy = —g (Vj+1 — v5) , (1.212)
P — P
we = Pit1 — Pj — %, (1.213)
1 [Pjy1 — P
wWs = = [M + p (Uj+1 — Uj)} , (1.214)
2a a
because ;
Ujpr — Ujpn = Y wprg, (1.215)

k=1



46 CHAPTER 1. LECTURE

for any U; and U j4;.

The remaining numerical fluxes, G; j1/2 %, and H; j x11/2 ,, are obtained in a similar man-
ner. However, we can obtain the corresponding formula by replacing u, v, and w in a cyclic
manner. The details are omitted here in order to save space.

We strongly recommend using the same function (or subroutine) to compute F'; /2,j.ms
Gijt1/2kms and H, ;009 , when coding the program in C or in Fortran. If the arguments
are changed appropriately, the function (or subroutine) can compute all of the numerical fluxes.
Two or more functions that are essentially the same are not easy to handle.

By substituting the numerical fluxes into Equation (1.172), we obtain a new state vector,
Ui j kn+1, which is of the first-order in space and time.

Next, we consider the Courant condition. The time step should be smaller in the three-
dimensional flow than in the one-dimensional flow. If the time step is smaller than

]‘ >\CL‘ max >\’y max AZ max

— : ’ ALy 1.216

AZ Az Ay T Az (1.216)
Aa:,maar = |U:r‘ + ¢cs, (1217)
Aymaz = vyl + s, (1.218)
Xemaz = V2] + cs, (1.219)

we can obtain the stable solution safely. 12
The solution of second-order accuracy in time is obtained by the following two-stage proce-
dure:

1. Compute the numerical fluxes F; /2
state Ui,j,k,n-

ke Gi7j+1/27k7n, and I-Ii7j’k+1/27n from the initial

2. Obtain the intermediate state U j 1 nq1/2, at ¢ = o + At/2 using the numerical flux.

3. Obtain the numerical fluxes F?+1/2,j,k,n+1/2’ sz+1/2,k,n+1/2’ and sz’kﬂﬂ’n“/? from
the intermediate state U, j . ny1/2 at t = to + At/2 so that the numerical fluxes are of
first-order accuracy in space.

4. Obtain the new state U; j i n4+1 at t = to + At using the numerical flux obtained in the
previous stage.

We have treated the three numerical fluxes separately, which is referred to as directional split-
ting. Directional splitting is widely used because it is easy to implement. However, directional
splitting does have some disadvantages, as discussed below.

When the gradient of the density (or that of the velocity) is parallel to the coordinate,
the flow is essentially one-dimensional and directional splitting is not problematic. However,
when the gradient is inclined with respect to the coordinate, the directional splitting produces
a spurious feature.

The weak points are relaxed if we take nearby cells into account when we interpolate and
extrapolate the density and velocity. As shown in Section 1.6, the physical variables, such as the
density and velocity, are extrapolated in order to achieve higher-order accuracy. The variables
are extrapolated along the coordinate in directional splitting. If the surrounding cells are taken
into account, the gradient will be improved.

The numerical fluxes for the two-dimensional hydrodynamical equations are derived easily
from the numerical fluxes for the three- dimensional hydrodynamical equations.

12The time step can be taken to be slightly longer than that shown here. Here, a very safe criterion is given.
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1.8 Inclusion of Gravity, Heating and Cooling

Thus far, we have ignored gravity in the hydrodynamical equations. However, gravity plays
an important role in astrophysics. Gravity appears as a source term in the hydrodynamical
equations.

If we take gravity, g, into account, the equation of motion and the equation for energy
conservation are rewritten as

ov 1

E—l—(v-V)v—i—;VP—,og7 (1.220)
and 5

5 (PE) + V(pvH) = pv-g, (1.221)

respectively. The right-hand side of Equations (1.220) and (1.221) are the source terms due
to gravity. The gravitational acceleration, g, is given by an external field (i.e., by an explicit
function of the coordinates) or by the solution of the Poisson equation for a given density
distribution. The Poisson equation is solved by iteration. In this textbook, we assume that the
gravitational acceleration has already been obtained.

The right-hand sides of Equations (1.220) and (1.221) are added separately after solving the
left-hand sides. In other words, we obtain the solution of the first-order in space and time as

Uj n+l — an F;+1/2n B ;—I/Qn
: — = : : ; 1.222
At Az = Sin ( )
0
S = pg | . (1.223)
pg - v

The solution of the second-order accuracy in time is obtained by adding the source term (S) at
each stage.

Inclusion of the gravity is easy, as shown above. However, a certain degree of care must be
taken. First, the grid spacing, Az, should be small, so that

lg| Az < a®. (1.224)

The left-hand side of Equation (1.224) denotes the potential energy difference over the grid
spacing, which is equal to the potential energy change when the gas flows from a cell to its
neighbor. The right-hand side of Eq. (1.224) denotes the square of the speed of sound, which
is equal to the specific thermal energy. Thus, Equation (1.224) requires that the spatial change
in the potential energy should be much smaller than the thermal energy. This is equivalent
to the requirement that the grid spacing be much smaller than the pressure scale height. If
Equation (1.224) is divided by |g|, the right-hand denotes the pressure scale height. When the
grid spacing is smaller than one-tenth the pressure scale height, gravity is taken into account
fairly accurately. If the grid spacing is larger than half the pressure scale height, the accuracy
of the solution is very limited. In addition, unnatural features may be observed due to the large
gravity.

Inclusion of the gravity appears to place another constraint on the time step, At. Suppose
that the initial velocity vanishes. The gas element moves by g At?/2 in a time step. The
movement should be smaller than the grid spacing, Axz. This gives the following condition:

g At?
2

< Az, (1.225)
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2
< . .
At < ’/gm Az (1.226)

This constraint is automatically satisfied if the Courant condition and Equation (1.224) are
satisfied simultaneously. In practice, for safety, we recommend lowering the CFL number slightly

which is equivalent to

when gravity is included in the computation.
Heating and cooling by radiation and nuclear and thermal reactions appear as source terms
in the hydrodynamical equations:

%(pE) + V(pwH) = pv-g + T — A, (1.227)
where I' and A denote the heating and cooling rates per unit volume, respectively. When
expressed as functions of density and temperature, they can be included easily. Heating by
nuclear and chemical reactions can be expressed as a function of density and temperature. In
addition, heating and cooling by radiation can be approximated as a function of density and
temperature, when the system is optically thin. When the system is optically thick, the radiative
transfer equations should be solved simultaneously. However, this is beyond the scope of this
textbook.

1.9 Extension to the Cylindrical and Spherical Coordinates

Next, in this section, we introduce a numerical method by which to solve the hydrodynamical
equations using cylindrical or spherical coordinates. When the hydrodynamical equations are
expressed in cylindrical or spherical coordinates, we need to modify them to apply the upwind
scheme.
Suppose that the density and velocity are independent of ¢ in cylindrical coordinates,

(r, ¢, z), for simplicity. The mass conservation is then expressed as

dp 10 0

= — =— (rpv — (rpv;) = 0. 1.228
The second term diverges from the axis (r = 0) and is difficult to treat in this form. To avoid
the divergence, we rewrite the mass conservation as

0 0 0
a(rp) + E(rpw) + a(rpvz) =0, (1.229)

by multiplying by r. We can rewrite this differential equation in integral form as

/@dv+/pv-dszo, (1.230)
v ot s

by integrating in the r- and z-directions. Here, dV' denotes the volume integral and is equal to
rdr dpdz. The integral form (Gauss’s law) denotes that the temporal change in mass within
a volume is equal to the sum of the mass flux flowing into and out from the volume thorough
the surface. Equation (1.229) is better than Equation (1.228) because the mass conservation is
more clearly shown in this expression.
If we multiply the hydrodynamical equations by r, they are expressed as follows:
0 0

0
= (1U) + = (1F,) + = (rF;) = 8, (1.231)
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U = |pv, |, (1.232)
PUz

pv,> + P
F, = POV, , (1.233)
POV
pHuv,
PUz
PR,
F, = PULU , (1.234)
pvs? + P
pHuv,

pve? + P
S = 0 ; (1.235)

)

E - 'Ur2+"ULp2+’Uz2+ 1
2 v —1

H — UT2+U¢2+UZ2 + v
2 v —1

, (1.236)

(1.237)

Slw el

Note that the extra source terms appear in this expression. The first source term denotes the
centrifugal force, and the second source term is related to the pressure gradient because

oP 10 P

These source terms, as well as the gravity, should be taken into account in the cylindrical
coordinates.

The state vector (U) and the flux vectors (F', and F,) are also multiplied by r. The radius,
r, is evaluated at the cell surface when the numerical flux is computed. When we compute
the numerical flux between the cells centered at » = r; and at r = 741, the radius should be
evaluated simply as 7 = 7;,1/o = (rj + 7j31)/2. Note that the value of r need not be evaluated
at the upwind side. Thus, the numerical flux in the r-direction (F',) is evaluated by applying
Roe’s formula as given in Section 1.5 after replacing (vs, vy, v.) with (v, vy, v2).

Care must be taken in evaluating the rotation velocity v, near the axis, because it is small
and proportional to the radius near the z-axis. However, the obtained value should be accurate
because the centrifugal force is vf, /7. Otherwise, the error is amplified by a factor of 1/r. The
best way to evaluate the rotation velocity is to assume that the angular velocity Q@ = v, /r
is approximately constant and changes smoothly near the axis. When the flow is symmetric
around the axis (0/0¢ = 0), this is a fairly good approximation. Thus, the boundary condition
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near the axis is given by

dp

87' = 0, (1.239)

v, = 0, (1.240)
o0

— = 1.241
ov,

= ) 1.242

or 0 ( )

This boundary condition is equivalent to assuming that p, 2, and v, are even with respect to
the reversal of r, while v, is odd.

Note that the third component of Equation (1.231) has no source term and hence the total
angular momentum around the z-axis is conserved in this finite difference method. This is an
advantage of the conservation form. The total angular momentum in the computation volume
is conserved within the round-off error as long as the boundary conditions are appropriate.

It is possible to include the dependence on ¢ in the cylindrical coordinates. However, in
practice, this is not possible near the z-axis because many cells are adjacent to each other on the
axis of r = (0. Special care should be taken if the three-dimensional hydrodynamical equations
are computed in cylindrical coordinates.

When spherical coordinates are applied, the mass conservation should be rewritten as

0 - 0 - 0 . 0 .
a(rzsmep) + 5(7"2 sinf pv,) + %(ﬁsmﬁpvg) + %(r2 sinfpv,) = 0.  (1.243)

Similarly, the other components of the hydrodynamical equations should be multiplied by a
factor 72 sin . Then, the source terms appear in the conservation form because of the centrifugal
force and pressure. They can be treated similarly to the case of the cylindrical coordinates.
Details are omitted to save space.

1.10 Boundary Conditions

The boundary condition, as well as the initial condition, is necessary for specifying a solution
for a given partial differential equation. In this section, we introduce the discretization of the
boundary condition.

The Dirichlet boundary condition and the Neumann boundary conditions are famous as
mathematically well-defined boundary conditions. The former specifies the value of the variable
on the boundary, while the latter specifies the gradient of the variable. In numerical simulations,
we employ conventional boundary conditions other than well-defined boundary conditions in
order to maintain the computation volume finite. First, we consider the Dirichlet and Neumann
boundary conditions.

Equations (1.239) through (1.242), which are given on the boundary of r = 0, are equivalent
to either the Dirichlet boundary condition (v,) or the Neumann boundary condition (p, 2, and
v,). For convenience, we assume that the radius can be negative. Then, Equations (1.239)
through (1.242) are equivalent to

p(=r) = p(r), (1.244)
vr(=r) = —u(r), (1.245)
Q(—r) = Q). (1.246)
P(—r) P.(r) (1.247)



1.11. EXTENSION TO MHD EQUATIONS 51

Suppose that the grids are placed on

- <j 7 %) Ar, (1.248)

in the r-direction. Then, we have the following numerical boundary conditions:

p(ro) = p(r), (1.249)
vr(ro) = —wr(r1), (1.250)
Q(ro) = Q(r), (1.251)
P(ro) = P.(r). (1.252)
and

p(ro1) = plra), (1.253)
v (ro1) = —wup(r2), (1.254)
Q(r_y) = Q(rg), (1.255)
P(r—1) = P.(re). (1.256)

The density, velocity and pressure in the region of negative r are obtained from those in the
region of positive r by the symmetry with respect to r = 0. In other words, there is no
boundary at » = 0 in a practical sense. The same procedure works for any symmetric boundary
or reflection boundary.

As stated earlier, we want to limit the computation box to be a finite volume around stars
or galaxies in numerical simulations. The surface of the computation box condition is artificial
and is not limited by any physical laws. However, we want to reduce the artificial effects due to
the boundaries as much as possible. For this purpose, several passive boundary conditions have
been proposed.

The simplest (least expensive) condition is to place the reflection boundary at a very large
distance from the center of the computation box. Although the waves reflected at the boundary
are artificial and unnatural, the effects are rather limited if the density is extremely low near
the boundary. If the grid spacing is larger near the boundary, then the artificial effects are
further reduced because the boundary extends further. We can also add artificial damping in
the narrow zone near the boundaries to reduce the reflected waves.

A more sophisticated boundary condition admits outgoing waves and inhibits incoming
waves. This boundary condition is called the radiation boundary condition. Variations in
density, velocity and pressure can be decomposed into waves, as described in previous sections.
Thus, it is possible to exclude only incoming waves. However, it is not possible to perfectly
cancel out a specific component of waves because the waves are nonlinear and the components
are coupled with each other.

1.11 Extension to MHD Equations

The magnetohydrodynamical (MHD) equations can also be solved by the upwind scheme. The
magnetohydrodynamical equations take the magnetic force and the induction of the magnetic
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field into account and are expressed as follows:

% + V-(pv) = 0, (1.257)
ov (VxB)xB -
p {(E + (v-V)'v} + VP + S 0, (1.258)
B
aa—t - Vx(vxB) = 0, (1.259)
0 .
5 (PE) + V (pH) = 0, (1.260)
_ P 1 P |BP
B = 545035 " 5y (1.261)
_ P v P |Bf
H = S5+ 295+ 50y (1.262)
ou oF
- — = 0. 1.26¢
By + o7 0 (1.263)

The MHD equations are more complicated than the hydrodynamical equations. First of all,
they have eight components, and we need to solve B as well as p, P, and v. Second, they are
associated with the constraint V- B = 0 and only seven of these components are independent.
Moreover, the MHD waves can be degenerate, i.e., the phase velocity of an MHD wave may
coincide with that of another. Even when the waves are degenerate, the eigenvectors should be
independent of one other. Fortunately, all of these technical complexities have been resolved.
We can solve the one-dimensional MHD equation as follows.

First, we rewrite the one-dimensional MHD equation into conservation form as follows:

ou OF

— — =0, 1.264
o T ar (1:264)
where
p
PUz
PUy
U = |pv, |, (1.265)
B,
B,
pE
o
B: + B2 — B
pv% + P+ ; T
B
p’UmUy — 4—
F - B.B. . (1.266)
PUpVy —
4
v By — vy B,
VB, — v.By
oHv, — By (Byvy + Byvy + B.v.)

47
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The numerical flux is expressed as
. 1
Fipip' = 5Fjm + Fj) — > Swye [ Akl Tk, (1.267)
k

where dwy, \g, and r; denote the amplitude, the phase velocity, and the eigenvector of the k-th
eigenmode. For later convenience, we use the suffix 0 for the entropy wave, the suffix Ay for
the Alfvén waves, the suffix f1 for the fast waves, and the suffix s1 for the slow waves.

The eigenvalues are denoted as follows:

" - (1.268)

Mo = B b b (1.269)

M = b (1.270)

My = e, (1.271)

VAR (1.272)

e = Ty b oo, (1.273)

e = B e (1.274)

where

o= o (1.275)

b VPi+1 Uz j+1 + \/P—jvas,j7 (1.276)
VPi+1 + \/Pj

5 = VPi+1 Uy i1 + /D) Vyj ’ (1.277)
NN

o VP Vz i+l + /D) Uz 7 (1.278)
VPi+1 + /D)

5, - VP By + \/P—jBy,j-I-l’ (1.279)
Vo1 + /B

5 VPit1 B-j + /Pj Bz,j+1, (1.280)
VPi+1 + \/Pj

7o \/mHﬂ'l + \/[TjHj (1.281)
VPi+1 + \/Pj

5 _ VPP + B P (1.282)
NN

The eigenvectors are expressed as follows:
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2
Cf.s
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v =1 (Byj+1— Byj)* + (B:js1 — Bj)’
v -2 87 (V/Pj+1 + \/Pj)?

924+ 02+92 B2+ B?+ B?
— H- X Y = TV 5, 1.284
(-1 ( L (1.284)

=2 =2 =2
(v — 1) (H _ %t 029 T 5b2> , (1.285)

B2 + B + B?
(v ~ 2)( r Ly , (1.286)

(1.287)

2 T 4.212
a; £ /ai— 4a%b? (1.288)

: (1.283)

Ty = vz , (1.289)

0

0
- Bz Sgn(Bm)
rAL = By sgn(By) , (1.290)
B V 47T/ﬁ
—By/4m/p

— (B:vy — Byvs)sgn(By)

0

0
B- Sgn(Ba:)
rA- = — By sgn(By) , (1.291)
B V 47T/ﬁ
— By\/4m/p

(B2vy — Byv.)sgn(By)
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and

Tir =

Ti =

+

Ts+ =

+

Ts+ =

/y_
fy_

v

7)2
(-

2
1

v — 2
v —1

),

(
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ay
af (Vz + cf)
— a; By by sgn(By)
— Oy ﬁz bz Sgn(B:r)
Qg ﬂy Cf v 477/[’
as B, cpr/AT/p

+ 00 + cpvp +

Qfuy
QfU,

2
cr
v —1
- aswagn(Bw)(ﬁy@y + ﬁzﬁz)

7)2
{5

ar
ay (0z — cy)
afvy + o By by sgn(By)
Oéf@z + o, ﬁz b:r Sgn(Bm)
Qs IBZJ v 47[-//6
as B cpr\/4AT/p

2

C
+ 0% — ety + —2
. — 1

-
G = a)} + abesen(By)(B,7, + Ao1.)

Qs
as (0 + cs)
asty + of By asgn(By)
asv; + af B, asgn(By)
_ay By a’®Ar
cry/p
a3, a’®\Ar
crVp
, as B, cpr/4m/p

- 2
as{@ F 602 4 by + —5
2 v —1

(2 — o)} + agasen(B.)(3,5, + B.5:)

Qg
Qg (@x - Cs)
asty — af By asgn(By)
asv, — af B, asgn(By)
ay By a’® \Ar
crv/p
a3, a’®Ar
crVp
as B cp/AT/p
_ c
- + 0% — civp + —
(cz — a2)} — ayfasgn(B,)(Byvy + [.7.)

2
s
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(1.292)

(1.293)

(1.294)

(1.295)
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where
B
By = —t—, (1.296)
\/ B2 + B2
B,
B, = —F—m, (1.297)
B + B?
B4 = 1, (1.208)
b o
af+ 2al = 1. (1.299)

f
The wave amplitudes are given as follows:

1 —
dSway = 3 [p(ﬁzAvy — ByAv,)sgn(By) + wﬁ(ﬁZABy — ByAB;) (1.300)
1 -
dwa_ = 3 [ﬁ(ﬁZAvy — ByAuv;)sgn(By) + 4/ 4p (B.AB, — B,AB;) (1.301)
B,AB, + B.AB,
dwgy + dwg = a—Qf (AP—i— 22y + ) (1.302)
s 4T
+ {azéz [(y - e — (y — 2a2] \VArTp (1.303)
f
af\ ByAB, + B.AB,
—2)\/B2+ B2=L Y & 1.304
+(7)\/+f} e (1.304)
Swy — dwr = ~LpAv, — 25500 (B,)p(B,Avy + BoAv,) (1.305)
cy cra
< B,AB, + B.AB,
Suwey + 0w, = 2 <AP i ) (1.306)
a a7
v — 2 c —
+ {af [ oy 1)—2] VaATp (1.307)
cy a
- 501 5,AB, + B.AB,
+ (y - 2)y/B2+ B2 } = , (1.308)
agby,
OWgy — Owg— = + —fsgn( Bg)p(ByAvy + 5. Av,), (1.309)
cra
dwy = Ap — ap(dwr + dwr) — o (dws + dws) (1.310)
These eigenvalues and eigenvectors satisfy the U property, as follows:
Uj+1 - Uj == Z(ka Tk, (1.311)
k
Fj.,.l — Fj = Zéwk )\k Ty . (1.312)

This type of numerical flux for the MHD equation was first given by Brio and Wu (1988).
Parameters such as ay were introduced by Ryu and Jones (1995) to handle the degeneracy. The
numerical flux was modified to satisfy the U property given in Cargo and Gallice (1997).
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1.12 Some Other Numerical Schemes

Although in this chapter we described only Roe’s method in detail, there are a number of
other popular schemes. This section briefly described these schemes, with emphasis on their
advantages.

Before introducing specific methods, we shall discuss the qualities of a good numerical
scheme. A perfect scheme can solve any problem stably with a high accuracy in a short time. Of
course, perfect schemes do not exist. Perhaps perfect schemes have not yet been discovered be-
cause of the existence of contradicting requirements. For example, high-accuracy schemes tend
to sacrifice short computation time. Robustness, which guarantees the ability to solve any prob-
lem, also requires greater computation cost in order to handle extreme conditions. We are often
forced to compromise between two competing factors. Thus, a particular method recommended
by a textbook or a paper should be regarded as being a good method for solving the particular
problem in which the authors are interested and should not be considered to be good for all
problems. As computer performance increases, the computation time for a specific problem is
reduced. In the near future, some methods that are currently considered to be impractical may
become practical. At present, however, a good method is only good for a particular type of
problem.

Some good methods pursue higher-order accuracy, i.e., third-order or fourth-order accuracy.
The Piecewise Parabolic Method (PPM) approximates the density, velocity, and temperature
by piecewise parabolic functions in a cell and achieves third-order accuracy in space. Other
methods employ the Runge-Kutta method, which is often used for solving ordinary differential
equations, to achieve fourth-order accuracy in time. These schemes reduce truncation errors in
the region where the density and velocity change smoothly.

Another method has been developed in order to capture the discontinuity more sharply. The
Godunov method gives the exact solution for the initial density and velocity and regards the
average over a cell as the solution. This method succeeds in treating a strong shock wave, in
front of which the density and velocity change dramatically. The Cubic InterPolation (CIP)
method proposed by Yabe and his collaborators is designed to capture the contact discontinuity
more sharply. The CIP method succeeds in solving the problem of a solid body floating in liquid.

The reduction of computation time is another consideration when developing a new scheme.
The HLL scheme reduces the time required to compute numerical flux by taking only the max-
imum and minimum phase speeds into account. This simplification reduces the computation
time appreciably without reducing the quality of the solution greatly. If the computation time
per cell is reduced, we can increase the number of cells and improve the resolution when the
total computation time is fixed.

Generally, computation load is reduced when accuracy is reduced. Thus, it is not recom-
mended to pursue excessive quality for unimportant regions. It is important to evaluate the
specific requirements of the evaluation method before starting numerical simulations. Although
robust code, which can manage any problem, provides good results, it consumes a great deal of
computation time.

A number of computation codes for numerical simulations of astrophysical problems are avail-
able online. ZEUS, which was developed by J. Stone, is one such code. Another is CANS, which
was developed by R. Matsumoto and his collaborators. The latter code is used for this winter
school and can be downloaded from http://www.astro.phys.s.chiba-u.ac.jp/netlab/pub/.
Both Japanese and English guide books are available for the CANS. The Japanese guide book
was written by H. Hanayama, and the English guide book was translated from the Japanese by
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S. Miyaji (Chapter 3).
For further study, we recommend “Riemann Solvers And Numerical Methods for Fluid Dy-

namics: A Practical Introduction” by E. Toro and “Numerical Computation of Internal and
External Flows” by C. Hirsch.



