Chapter 2

Exercises

2.1 Usage of the example package scalar

In this section, we will explain how to use the package for solving a scalar equation. The content
of this package is as follows:

1ls scalar
Makefile anime.pro main.f pldt.pro pldtps.pro rddt.pro

The program is written in Fortran that is one of the most popular programing language in the
field of astronomical simulations. It is contained in the file ‘main.f’ in this example.

2.1.1 Compilation and execution of the program

Before executing a program, we need to ‘compile’ it — change a format of the program from a
human readable one into a machine executable one. After moving to the directory “scalar/”,
execute the UNIX command ‘make’. Then, the program will be executed after a compilation. If
succeed, you will find several new files, main.o, a.out and out.dat in this directory. The file
main.o is an ‘object’ file corresponding to ‘main.f’, and the file ‘a.out’ is an ‘executable’ file.
The result of the simulation is contained in the output data file ‘out.dat’.

~
cd scalar
make
£77 -c -0 main.o main.f
main.f:
MAIN:
£77 -o a.out main.o
./a.out
write step= 0 time= 0.000E+00
write step= 50 time= 0.125E+02
write step= 100 time= 0.250E+02
normal stop
1s
Makefile anime.pro main.o pldt.pro rddt.pro
a.outx* main.f out.dat pldtps.pro
- j

60 CHAPTER 2. EXERCISES

2.1.2 Output data file (out.dat)

You can read the content of the ‘out.dat’ file by using an editor or an appropriate UNIX command
(e.g. more, less, head etc.) since it is written in a human readable format. The following is an
example of the content. The first line indicates the spatial size (jx) of the data array and the
number of outputs (nx) in the temporal sequence of the simulation. In this example, there are
3 sets of arrays with length of 100. The next line is for the ‘time’ information of the first data
set. Here the item ‘0’ and ‘0.00” correspond to the step (ns) and the time (time), respectively,
of the first data set in the output. From the next to the 102nd line, the data is placed. The left
and right column indicates the spatial coordinate (x) and the value (u) of the simulation result.
The next data set starts from the 103rd line in the same order, and so on. This output format
is defined at the 53, 55, and 59th lines in the Fortran program file ‘main.f’.

~
head out.dat

100, 3

0, 0.00
1.0, 1.0000000
2.0, 1.0000000
3.0, 1.0000000

2.1.3 Visualization of a result

We usually use a special software for the visualization of the simulation results. Here we in-
troduce “IDL” that is one of such commercial (expensive!) softwares and is very popular in
astronomical data analysis both for simulations and observations.

Startup of IDL (idl)

To startup IDL, type id1l.

o >

Then, it starts as follows:

IDL Version
Installation number: XXXXX.
Licensed for use by: XXXXX

IDL>

You can enter the IDL. commands after its prompt “IDL>”. You may also run an IDL program.

Loading the data into the IDL session (.r rddt)

To load the simulation data into the IDL session, use the IDL program rddt.pro as follows:

(:IDL> .r rddt :)

4

After this, you can refer to, process, and visualize the data in the IDL session. Here “.r” means

2.1. USAGE OF THE EXAMPLE PACKAGE SCALAR 61

“run”.

Plot of the data (.r pldt)

To plot the data, use the IDL program pldt.pro as follows:

[IDL> .r pldt)

The result will be like Fig 2.1

Figure 2.1: Plot of the simulation results in the ‘scalar’ package

Animation of the simulation results (.r anime)

To make an animation of the simulation results, use the IDL program anime.pro as follows:

[IDL> .r anime)

As a result of this IDL program, there appears a new window showing an animation. Note that
an error occurs if you try to open another animation window simultaneously. Keep only one

window.

Finish an IDL session (exit)

To finish an IDL session, type “exit” after the IDL prompt.

[IDL> exit]

62 CHAPTER 2. EXERCISES

2.1.4 Modification of the program
Change the hydrodynamic solver

The main solver in the example package is written with the upwind algorithm The Fortran
statements of the algorithm is in the 72nd to 88th lines of ‘main.f’. You can change it by
modyfing these lines.

4 N

e |
c solve equation
c
c upwind - start
>>>

do j=1,jx-1

£(3)=0.5%(cs*(u(j+1)+u(j))-abs(cs)*(u(j+1)-u(j)))
enddo

f(x)=f(jx-1)

do j=2,jx-1
u(j)=u(j)-dt/dx*x(£(j)-£(j-1))
enddo

u(1)=u(2)
u(jx)=u(jx-1)
c upwind - end >>>

Change the number of mesh points (jx)

The number of mesh points is defined by the value of the variable jx at the 5th line of the
program. The spatial resolution of the simulation can be controled by modyfing this part.

[parameter (jx=100)]

Change the finishing step, the output settings (nstop, nskip)

The finishing step and interval step of the output are defined by the value of the variables nstop
and nskip, respectively.

c time control parameters

nstop=100
nskip = 50

2.1. USAGE OF THE EXAMPLE PACKAGE SCALAR 63

Change the interval of the temporal stepping (safety)

The interval of the temporal stepping is determined by the CFL condition — a stability condition
corresponding to each algorithm. This condition gives only an upper limit for the temporal
interval. So we usually determine it by giving a ‘safety number’ (safety) less than unity. By
changing this value, the stability, quality, and cost of simulations can be controlled.

c obtain time spacing
safety=0.25

64 CHAPTER 2. EXERCISES

2.1.5 Appendix

Sample Fortran program, main.f

4 N

c I
array definitions

implicit real*8 (a-h,o0-z)
parameter (jx=100)
dimension x(1:jx),u(1l:jx),f(1:jx)

prologue

O 0O o0 0

time control parameters
nstop=100
nskip = 50

¢ 1initialize counters
time = 0.0
ns =0
nx = nstop/nskip+1

G |
c Set initial condition
G |
pi=4.*atan(1.0)
c grid
dx=1.0
x(1)=dx
do j=1,jx-1
x(j+1)=x(j)+dx
enddo
c
c variable
do j=1,jx/2
u(j)= 1.0
enddo
do j=jx/2+1,jx
u(j)= 0.0
enddo
velocity
cs=1.0
O
c Output initial condition
c

write(6,103) ns,time

103 format (1x,’ write ’,’step=’,18,’ time=’,el0.3)
open(unit=10,file=’out.dat’,form=’formatted’)
write(10,100) jx,nx

100 format(ib,’,’,ib)
write(10,101) ns,time

2.1. USAGE OF THE EXAMPLE PACKAGE SCALAR

[101 format (i5,’,’,£6.2)
do j=1,jx
write(10,102) x(j),u(j)
enddo
102 format(£f5.1,°,’,£f10.7)

C

c time integration

C

1000 continue
ns = ns+l

c obtain time spacing
safety=0.25
dt=safety*dx/cs
time=time+dt

c solve equation

c upwind - start >>>
do j=1,jx-1
£(3)=0.5%(cs*(u(j+1)+u(j))-abs(cs)*(u(j+1)-u(j)))
enddo
f(3x)=f(jx-1)

do j=2,jx-1
u(j)=u(j)-dt/dx*(£(j)-£(j-1))
enddo
u(1)=u(2)
u(jx)=u(jx-1)
c upwind - end >>>

c data output

if (mod(ns,nskip).eq.0) then
write(6,103) ns,time
write(10,101) ns,time
do j=1,jx

write(10,102) x(j),u(j)

enddo

endif

if (ns .1lt. nstop) goto 1000
close(10)

write(6,%*) > ### normal stop ###’
end

66

Sample IDL program, rddt.pro

CHAPTER 2. EXERCISES

; rddt.pro
openr,1,’out.dat’
readf,1, jx,nx

; define array
ns=intarr (nx)
t=fltarr (nx)

x=fltarr(jx)
u=fltarr(jx,nx)

; temporary variables for read data
ns_and_t=fltarr(2,1)
x_and_u=fltarr(2, jx)

for n=0,nx-1 do begin
readf,1l,ns_and_t
readf,1,x_and_u
ns(n)=fix(ns_and_t(0,0))
t(n)=ns_and_t(1,0)
u(*,n)=x_and_u(1,x*)
endfor

close,1
free_lun,1

x(*)=x_and_u(0,*)
delvar,ns_and_t,x_and_u

help
end

2.1. USAGE OF THE EXAMPLE PACKAGE SCALAR

Sample IDL program, pldt.pro

67

- I
Ix.style=1
ly.style=1
!p.charsize=1.4
plot,x,u(*,0) ,xtitle="x’,ytitle=’u’,linest=1,yrange=[-1,3],xrange=[0,100]
for n=1,nx-1 do begin
oplot,x,u(*,n)
oplot,x,u(*,n),psym=4
endfor
end
_ J
Sample IDL program, anime.pro
- N
Ix.style=1
ly.style=1
!p.charsize=1.4
window,xsize=480,ysize=480
xinteranimate,set=[480,480,nx]
for n=0,nx-1 do begin
plot,x,u(*,n),xtitle="x’,ytitle="u’,yrange=[-1,3],xrange=[0,100]
oplot,x,u(*,n),psym=4
xinteranimate,frame=n,window=0
endfor
xinteranimate
end
o %

2.1.6 Exercise

Linear wave equation

Run the example package of the ‘scalar’ by referring to Section 2.1.1 to 2.1.5 of this textbook. The
package is for solving the linear wave equation by the upwind algorithm. The initial values are
uj =1for j =1,..50 and u; = 0 for j = 51,...100. The Courant number is v = cAt/Ax = 0.25.

Make following new programs by modifying the original one, namely,

1. a program solving by the FTCS algorithm, and

68 CHAPTER 2. EXERCISES

2. a program solving by the Lax-Wendroff algorithm,
3. a program solving with the minmod limiter (see Equation 1.146).

Plot and compare the results of these programs with each other.

Note: A finite difference form of the one-dimensional wave equation

ou ou

— — =0 2.1
ot T or (2.1)
can be written like
At
1
uH =l - A_x(e — I)- (2.2)

By using the FTCS (Forward in Time and Centered in Space) algorithm, the numerical flux is
given as

. 1 1
12 = 5w+ i) = e (wjn +). (2.3)

Examples of the numerical flux of other algorithms for the linear wave equation as follows:
Lax-Friedrich algorithm:

1 1 1
e = B (1- ;) cujpr + (1+ ;) cuj (2.4)
Upwind algorithm:
n 1
Five =g le (i +ug) el (w41 —uy)] (2.5)
Lax-Wendroff algorithm:
n 1
2= [(1—v) cujpr + (1 +v) cuj | (2.6)
Here, v = cAt/Ax.

Burgers equation

Make and run a program for solving the Burgers equation,

ou 0 [(u?
= 5 <7> =0, (2.7)

by the 1st-order upwind algorithm. Plot the results and compare them with those in Figures
1.9 — 1.12. The numerical flux for this program can be written as

1 U1'+12 Ur'2].
fiv2=3 { < St) gl sl =) ¢ (2.8)

2.1. USAGE OF THE EXAMPLE PACKAGE SCALAR 69

Diffusion equation

Make and run a program for solving the diffusion equation,

ou 0%y

by the FTCS algorithm. Plot the results and compare them with those in Figure 2.2. Set up an
appropriate initial distribution, e.g. a Gaussian distribution, and define the diffusion coefficient
k instead of the wave speed c as follows:

4 N
c variable
do j=1,jx
u(j)= exp(-(((x(j)-x(jx/2))/5.)**2))
enddo
C
c kappa
kappa=1.0
- j
3t
2- &

0 20 40 60 80 100

Figure 2.2: Result of a simulation for solving the diffusion equation.

70 CHAPTER 2. EXERCISES

2.2 Usage of the CANS package: shock tube problem

2.2.1 CANS1D

The CANS1D consists of many sets of subroutines and model packages. For example, the sub-
routines to solve the hydrodynamic / magnetohydrodynamic (MHD) equations are contained
under the directory “hdmlw”. The files are as follows:

~
1s hdmlw
Makefile mlw_ht.f mlw_m3_g.f mlw_m_g.f mlwfull.f
README mlw_ht_c.f mlw_m3t.f mlw_mt.f mlwhalf.f
Readme.tex mlw_ht_cg.f mlw_m3t_c.f mlw_mt_c.f mlwsrcf.f
mlw_a.f mlw_ht_g.f mlw_m3t_cg.f mlw_mt_cg.f mlwsrch.f
mlw_h.f mlw_m.f mlw_m3t_g.f mlw_mt_cgr.f
mlw_h_c.f mlw_m3.f mlw_m_c.f mlw_mt_g.f
mlw_h_cg.f mlw_m3_c.f mlw_m_cg.f mlw_rh.f
mlw_h_g.f mlw_m3_cg.f mlw_m_cgr.f mlwartv.f
- J

The model packages are collections of programs for solving the ‘typical problems’ that are
considered to be basic for understanding the hydrodynamic / MHD simulations, e.g. the shock-
tube problem, the Sedov point explosion problem and so on. Each package is contained in a
separate directory whose name start with “md_”. From here, we will explain the shock-tube
problem as an example to use the CANS1D. The files in the shock-tube problem package are as

follows:
~
1s md_shktb
Makefile bnd.f pldt.pro
README cipbnd.f rddt.pro
Readme.pdf main.f shktb_analytic.pro
Readme.tex main.pro
anime.pro model.f
- /

The solving program consists of several files with a file-name extension ".f* written in the Fortran
language. The documents are in the files README and Readme.pdf.

2.2.2 Compilation of the subroutines in CANS1D

Before executing a program, we need to ‘compile’ subroutines. By this procedure, several ‘library
archive’ files will be made with a file extension ‘.a’ under the CANS top directory. After moving
to the CANS top directory, execute the UNIX command ‘make’. (Warning! It will take much
time if the CPU speed is low.) The products of this procedure are the library-archive files,
libcansnc.a, libcansid.a, libcans2d.a, and libcans3d.a. Each of these is an archive of
object files of the subroutines.

2.2. USAGE OF THE CANS PACKAGE: SHOCK TUBE PROBLEM 71

e I
cd cans
make
1s
Develop.txt Models.tex Readme.log cansld/ idl/ xmhdshktb.ps
Makefile NonLTE/ Readme.pdf cans2d/ libcansld.a xshktb.ps
Makefile.rel README Readme.ps cans3d/ libcans2d.a
Models.pdf Readme.aux Readme.tex cansnc/ libcans3d.a
Models.ps Readme.dvi avs/ htdocs/ libcansnc.a

o %

2.2.3 Compilation and execution of the main program

For the compilation of the main program of the shock tube problem, move to the directory
cansld/md_shktb. Execute the UNIX command ‘make’. Then, the program will be executed
after a compilation. If succeed, you will find several new files, main.o, a.out, params.txt
and several files with extension of ‘.dac’ in this directory. The file main.o is an ‘object’ file
corresponding to ‘main.f’, and the file ‘a.out’ is an ‘executable’ file. The result of the simulation
is contained in the output data file ‘*.dac’.

4 N
cd cansld/md_shktb
make
£77 -c -0 main.o main.f

£f77 -¢ -o model.o model.f

£f77 -c -o bnd.o bnd.f

£77 -c -o cipbnd.o cipbnd.f

f77 -0 a.out main.o model.o bnd.o cipbnd.o \

-L../.. -lcansld -lcansnc

/a.out

write step= O time= 0.000E+00 nd = 1
write step= 51 time= 0.101E-01 nd = 2
write step= 93 time= 0.201E-01 nd = 3
write step= 585 time= 0.142E+00 nd = 16
stop step= 585 time= 0.142E+00

normal stop
N /

2.2.4 Visualization of a result

We usually use a special software for the visualization of the simulation results. Here we in-
troduce “IDL” that is one of such commercial (expensive!) softwares and is very popular in
astronomical data analysis both for simulations and observations.

Startup of IDL (idl)

To startup IDL, type id1.

72 CHAPTER 2. EXERCISES

o >

Then, it starts as follows:

IDL Version
Installation number: XXXXX.
Licensed for use by: XXXXX

IDL>

You can enter the IDL commands after its prompt ‘IDL>’. You may also run an IDL program.

Loading the data into the IDL session (.r rddt)
To load the simulation data into the IDL session, use the IDL program rddt.pro as follows:

[IDL> .r rddt)

After this, you can refer to, process, and visualize the data in the IDL session. Type ‘help’ to
obtain a list of available arrays and variables in the IDL session.

~
IDL> help
GM FLOAT = 1.40000
IX LONG = 1026
NX LONG = 16
PR DOUBLE = Array[1026, 16]
PR1 FLOAT = 0.100000
RO DOUBLE = Array[1026, 16]
RO1 FLOAT = 0.125000
T DOUBLE = Array[16]
TE DOUBLE = Array[1026, 16]
VX DOUBLE = Array[1026, 16]
L)

Here PR, RO, TE and VX are arrays of the pressure, density, temperature and (x-component of)
velocity, respectively. Note that in IDL sessions, the letter case of the variable names will be
ignored, namely 'pr’ and 'PR’ correspond to the same variable.

Plot of the data (.r pldt)

To plot the data, use the IDL program pldt.pro as follows:

(:IDL> .r pldt :}

2.3. EXERCISE 73

Figure 2.3: Result of the package md_shktb

Animation of the simulation results (.r anime)

To make an animation of the simulation results, use the IDL program anime.pro as follows:

[IDL> .r anime)

Finish an IDL session (exit)

To finish an IDL session, type exit after the IDL prompt.

[IDL> exit)

2.3 Exercise

2.3.1 Try CANS1D

1. Try the model package ”Isothermal shock tube (md_itshktb)”. Run the program and
visualize the results by using IDL.

74 CHAPTER 2. EXERCISES

2. Try the model package ”Shock tube (md_shktb)”. Run the program and visualize the

results by using IDL.
3. Try the model package ”Shock formation (md_shkform)”. Run the program and visualize

the results by using IDL.
4. Try the model package "MHD shock tube (md_mhdshktb)”. Run the program and visualize

the results by using IDL (Fig. 2.4).
5. Try any of the model packages.

Figure 2.4: Results of md mhdshktb

Note:

e When one runs a Fortran program, the output files, params.txt and ***.dac are all
overwritten. Rename these files or back up to any other directory before executing a
program to avoid overwriting.

e To remove the object and executable files, type “make clean” after the UNIX prompt.

2.3.2 Try and modify the package md_shktb

Change the number of the mesh points by modyfing the appropriate file(s) in the model package
”Shock tube (md_shktb)”, run the program, and compare the results with the original one. Also
change the interval of the data output and try an animation in IDL.

2.3.3 Try and modify the package md_sedov

Change the specific heat ratio v by modyfing the appropriate file(s) in the model package
”Supernova: the Sedov solution (md_sedov)”, run the program, and compare the results with

2.4. ADVANCED EXERCISE 75

the original one.

2.4 Advanced Exercise

Referring to Section 1.5, answer the following questions. We consider a one-dimensional hydro-
dynamic flow. The initial condition is given by,

(1, 1, 0) (7 <0)
(pj» Py uj) = { (0.81, 0.6, 0) (j’ > 0)

The gas is ideal one and specific heat ratio is v = 5/3.

1. Compute the Roe average density from pg and ps.
2. Compute Hy, Hy, and H.

3. Compute the sound speed, a.

4. Compute the amplitudes, wy, wo and ws.

5. Modify the package md_shktb and obtain the numerical solution. Explain the numerical
solution in terms of a, wy, wo and ws.

6. Try the package md_shkin and compare the results with Figure 1.17.

