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Ukiyoe. Adopted from Hokusai Katsushika, Fugaku Sanjurokkei [1831]

A picture of clouds where the K-H seems to develop. The picture is adopted

from the web site Houze’s Cloud Atlas (http://www.atmos.washington.edu/gcg/Atlas/).

The simulation result which models the global interaction between the solar
wind and the Venus ionosphere. The color intensity shows the number density

of plasmas. The picture is cited from Figure 4 in Terada et al.[2002].

Astrophysical phenomena where the K-H instability seems to operate. The
left panel shows the X-ray image of the core of the galaxy cluster observed
by Chandra. The image is cited from Figure 1(b) in Fujita et al.[2002]. The
right panel shows the simulation result of the astrophysical jet performed by

Hardee et al.[1997]. . . . . . . . . .. L

Schematic view of the earth magnetosphere interacting with the solar wind

(picture by J. Burch, Southwest Research Institute, San Antonio, USA).. . .

Left panel: Open magnetosphere model proposed by Dungey[1961]. The figure
shows the cross section of the magnetosphere in the noon-midnight meridian
plane (Adopted from Bothmer[1993]). Right panel: Close magnetosphere
model proposed by Axford and Hines[1961]. The figure shows the cross section

of the magnetosphere in the equatorial plane which is viewed from the north.

The growth rates of the K-H instability are shown for various mass ratios,
16(dash), 64(dash-dot) and 144(dash-three dots) along with the result for the
ideal MHD case (solid). The abscissa shows the wave number in the x direction
normalized by the initial shear width and the ordinate shows the growth rate

normalized by the factor A\/Vi. . . . . o ..o oL
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Abstract of the Dissertation

Turbulent Mixing and Transport of Collision-less Plasmas across a
Stratified Velocity Shear Layer

by

Yosuke Matsumoto
Doctor of Philosophy in Earth and Planetary Sciences
University of Tokyo, Tokyo, 2004

Since Lord Kelvin[1871] and Helmholtz[1868] firstly pointed out that a relative motion of
two media causes an unstable wave at the boundary between them, many theoretical and
experimental efforts have been devoted to understand its property over the last century.
And today, the growing wave at such an interface is well known as Kelvin-Helmholtz (K-H)
instability after the names of the first two contributors. Because of its universal property,
the applications are involved in diverse areas; the K-H instability appears not only in geo-
physical phenomena but also in the space and astrophysical phenomena. Among a numerous
applications of the K-H instability the present dissertation mainly focuses on the interaction

between the solar wind and the earth magnetosphere.

High conductivity of plasma around the earth justifies the frozen-in condition, and thus
the earth’s intrinsic magnetic field can shield from the solar wind plasma directly penetrating
into the earth atmosphere. However, the evidences that indicate the existence of the solar
wind plasma inside the earth magnetosphere give us long standing problems. Especially, the
indication of the direct penetration of the solar wind plasma across the low latitude boundary
at the flanks of the magnetosphere, that cannot be explained by the established reconnection
(open magnetosphere) model, still requires a new theoretical model. In this decade, the low
latitude boundary therefore has been a subject of mass transport from the solar wind to the
earth magnetosphere and many theoretical approaches have attempted to explain it. In this

context, the K-H instability, which is considered to be unstable at that region, has been a

xvi



candidate for this model because its non-linear development is characterized by mixture of
two media. The simple vortex evolution, however, cannot explain the broad mixing area,

and another mechanism is needed for this kind of issues.

In this study, I again shed a new light on the K-H instability by showing that it can
transport the solar wind mass in the widely spread region by computational manners. The

main results of the dissertation are summarized as follows.

0.1 Cross-field diffusion across a homogeneous velocity shear layer

Mixing process of both the ion and electron across a transverse magnetic field by the K-H
instability is studied by using full particle simulation. The simulation results indicate that
the mixing area increases with time as the K-H develops. The most mixed regions for both
the ion and electron are restricted within the interface at which two plasma populations
face. The increase in mixing area is mainly contributed from the stretched path length of
the interface, while the cross-field diffusion in the direction perpendicular to the interface
indicates that the electrons diffuse to follow the ions. Electrostatic waves induced by thermal
fluctuation scatter electrons and the interface of two electron population is deformed into

fine structures to fill up the ion mixing area.

0.2 Turbulent mixing and transport across a stratified velocity

shear layer

The two-dimensional simulation of the K-H instability in a non-uniform density medium
shows strong development of turbulence through non-linear instabilities. Ideal MHD simula-
tion results indicate that the difference in density between two media plays a crucial role on
the fast turbulent mixing and transport. The onset of the turbulence is triggered not only by
the secondary K-H instability but also by the Rayleigh-Taylor (R-T) instability at the density
interface inside the normal K-H vortex. The secondary R-T instability alters macroscopic

structure by transporting dense fluids to tenuous region, while the secondary K-H instability
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is just a seed for the turbulence. Full particle simulation is also conducted and reproduces
the similar result of the ideal MHD’s except that the secondary R-T instability grows during
the first turning over motion of the normal K-H instability. Strong electrostatic field caused
by the secondary R-T instability scatters ions and deforms electron density interface and as
a result the mixing area increases fast and extends spatially as compared to the result in the

uniform density case.

0.3 Dawn-dusk asymmetry in the non-linear development of the

K-H instability

The full particle simulations of the K-H instability in the stratified shear layer show the
asymmetry in the non-linear development between the positive and the negative velocity
shear cases. In the positive shear case the onset of the secondary instability, which leads the
system to the turbulence, appears in the early non-linear stage of the K-H instability. On the
other hand, the apparent transition from the laminar to the turbulent flows does not appear
in the negative shear case. This asymmetry is interpreted as a result of an asymmetry in the
finite Larmor radius (FLR) effect of the ion at the outer edge of the vortex. The difference
in the FLR effect appears at the newly induced velocity shear layer in the non-linear stage
of the K-H instability. In the positive shear case (Bg - Q¢ > 0) the outer edge of the vortex
in the negative y region, where is R-T unstable, becomes a positive shear. The FLR effect
weakly stabilize the onset of the secondary instability, particularly the R-T instability. On
the other hand, in the negative shear case (Bg - 2o < 0), the R-T unstable region becomes a
negative shear layer that increases effectively the ion gyro radius. The enhanced FLR effect

strongly stabilizes the onset of the secondary R-T instability.

The present onset mechanism and the formation of the broad mixing layer give the new
understanding of the mass transport mechanism from the solar wind via the low latitude

boundary.
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CHAPTER 1

General Introduction

1.1 Kelvin-Helmholtz instability

An interface between two media flowing relative to each other is unstable and the resulting
growing wave is well known as Kelvin-Helmholtz (K-H) instability (Helmholtz, 1868; Kelvin,
1871). Since the non-linear evolution of the K-H instability is characterized by a momentum
exchange and mixing of two media, it has been studied for a long time and applied to a
variety of fields in extensive scales of phenomena. A wind-induced water wave is a general
representative phenomenon that can be seen anywhere. When wind flows over a sea surface
with speed above 650 cm/s, Kelvin[1871] has shown that the sea surface is unstable. And
then, the sea surface eventually develops to a large amplitude wave as shown in Figure 1.1.

The K-H instability is a main contributor for the atmospheric and oceanic mixing processes

372 ki

&

]

Figure 1.1: Ukiyoe. Adopted from Hokusai Katsushika, Fugaku Sanjurokkei [1831]



(Fritts et al., 1996). Actually, one may find a K-H vortex growing when one looks up in
the sky as shown in Figure 1.2, which indicates the development of the K-H vortex at the
cloud surface sheared with the fast wind flows. While the K-H instability has been studied

Figure 1.2: A picture of clouds where the K-H seems to develop. The picture is adopted

from the web site Houze’s Cloud Atlas (http://www.atmos.washington.edu/gcg/Atlas/).

extensively for the applications to the geophysical phenomena, the plasma physics have also
developed the understanding of the role of the K-H instability for the applications to some
experimental, space and astrophysical phenomena. Sheared E x B drift (K-H) instability
inhibits the turbulent transport in tokamaks of laboratory plasmas (Tajima et al., 1991).
Planetary phenomena such as the formation of the low latitude boundary layer (LLBL) at
the earth magnetosphere (Axford and Hines, 1961; Sckopke et al., 1981) and the magnetic
flux ropes observed in the Venus ionosphere (Russell and Elphic, 1979; Thomas and Winske,
1991) are considered to attribute to the K-H instability excited by the shocked solar wind
plasmas. Recently, the global simulation modeling the interaction between the solar wind and
the Venus ionosphere reproduced the excitation of the K-H instability (Terada et al., 2002,
Fig. 1.3). The recent observational and the computational studies reveal the deformation
and/or the disruption of the galaxy cluster (Fujita et al., 2002) and the astrophysical jets
(Norman et al., 1982; Hardee et al., 1997; Lobanov et al., 2001) by the K-H instability which

is excited by the interaction with the intergalactic medium (Fig. 1.4).
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Figure 1.3: The simulation result which models the global interaction between the solar wind
and the Venus ionosphere. The color intensity shows the number density of plasmas. The

picture is cited from Figure 4 in Terada et al.[2002].

1.2 Sun-Earth connection

Among the numerous applications of the K-H instability, the present dissertation is especially
focusing on the interaction between the shocked solar wind and the earth magnetosphere.
High energy plasmas ejected from the sun, which is called ”solar wind”, travels the in-
terplanetary space and arrives at the earth with forming a shock at the day side front of
the earth (“bow shock”) as a supersonic flow interacts with an obstacle. Since the solar
wind plasma is a high conductive medium, the earth’s magnetic field is confined into a cav-
ity generated in the solar wind, which is called ”magnetosphere” (Fig. 1.5). Hence, the
earth dipole magnetic field shields the energetic particles of the solar wind from directly
penetrating into the earth and it therefore guarantees our safe and healthy day-life. The
past great efforts of the grand-based and the in-situ observations, however, have revealed
that the dipole magnetic field does not perfectly protect against the solar wind plasma. It
manages to get inside the magnetosphere. How does it get in? Where and what is the
loophole? Numerous researchers on space plasma physics have challenged to answer these
questions. In this context, in 1961, two major models on the interactions between the solar

wind plasma and the earth magnetosphere caused a paradigm shift. The one is so called



Figure 1.4: Astrophysical phenomena where the K-H instability seems to operate. The left
panel shows the X-ray image of the core of the galaxy cluster observed by Chandra. The
image is cited from Figure 1(b) in Fujita et al.[2002]. The right panel shows the simulation

result of the astrophysical jet performed by Hardee et al.[1997].

“open magnetosphere” model proposed by Dungey[1961] (Fig. 1.6, left panel) and the
other is so called “closed magnetosphere” model by Axford and Hines[1961] (Fig. 1.6,
right panel).

The former model incorporates the violation of the frozen-in condition, which permits a
finite resistivity and thus results the reconnection of the earth’s northward dipole magnetic
field lines with the southward interplanetary magnetic field (IMF) lines at the day side
magnetosphere. Open magnetosphere by the reconnection results the effective transport of
the solar wind plasma to the earth magnetosphere. The reconnected magnetic field lines
transport the solar wind plasma to the night side of the magnetosphere where the draped
field lines again reconnects. Eventually, a part of the plasmas originated from the solar wind
gain the magnetic field energy and rushes toward the earth. Those plasmas are considered
to be an origin of ” Aurora”. This closure of the energy and the mass trading with the solar
wind well explains the in-situ observations and has became a standard model in the case of

southward IMF.

On the other hand, the latter model suggested a rather quiet interaction incorporating a

viscous interaction along the flanks of the magnetosphere, which could permit solar wind mo-



Figure 1.5: Schematic view of the earth magnetosphere interacting with the solar wind

(picture by J. Burch, Southwest Research Institute, San Antonio, USA).

mentum to diffuse onto closed magnetospheric field lines. The resulting tailward convection
flow would eventually be closed by an earthward returning flow in the center of the tail. The
solar wind plasma pasts by the flanks of the magnetosphere across which the flow velocity
is sheared. This situation is a favorable condition for the excitation of the K-H instability,
and thus the K-H instability has been a major candidate for the mechanism of the viscous
interaction along the flanks of the magnetosphere. This model possibly explains the trans-
port of the solar wind momentum into the earth magnetosphere but does not suggest any
mass transport mechanisms. Therefore, the K-H instability has been considered to be just a
backseat player and support the crucial player ,which instead the explosive phenomenon of
the reconnection plays, on the stage of the Sun-Earth connection model. The recent in-situ
observations, however, have revealed that there exists the region of closed field lines filled
with the mixed plasmas which consist of the solar wind and the magnetospheric origins.
That region is called “Low latitude boundary layer (LLBL)” (Sckopke et al., 1981;
Phan et al., 1997; Fujimoto et al., 1998). At the same time the in-situ observations which
indicate the vortex motions generated by the K-H instability in the LLBL have been reported
(Hones et al., 1981; Ogilvie and Fitzenreiter, 1989; Seon et al., 1995; Fairfield et al., 2000).
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Figure 1.6: Left panel: Open magnetosphere model proposed by Dungey[1961]. The figure
shows the cross section of the magnetosphere in the noon-midnight meridian plane (Adopted
from Bothmer[1993]). Right panel: Close magnetosphere model proposed by Axford and
Hines[1961]. The figure shows the cross section of the magnetosphere in the equatorial plane

which is viewed from the north.

From these observations the K-H instability have recently been related with another mass
transport mechansims across the LLBL. Even though many observational evidences have
indicated that the K-H instability also plays a crucial role on the mass transport, theoretical

supports have not been given until now.

1.3 Theoretical and computational approach to K-H instability

Numerous theoretical and computational studies have been devoted to understand the linear

and non-linear properties of the K-H instability in relation to the magnetospheric interaction.

Since Chandrasekhar[1961] revealed the importance of the orientation of the magnetic
field with respect to the ambient flow on the linear growth of the K-H instability, numerous
studies have been devoted to understand the linear properties of the K-H instability (Sen,
1964; Southwood, 1968; Ong and Roderick, 1972; Pu and Kivelson, 1983). Miura and



Pritchett[1982] finally established the linear theory for arbitrary conditions, in which they
quantitatively showed that a magnetic field component parallel to the flow is found to be
stabilizing effect as a surface tension force acts in a hydrodynamic case. Hence the orientation
of the magnetic field with respect to the flow is an important factor for the MHD application.
In the earth magnetosphere the solar wind plasma is sheared at the magnetospheric boundary.
At the high latitude boundary the solar wind direction is almost parallel to the magnetic field
called “tail lobe” region. The strong parallel magnetic field limits the unstable condition
of the K-H instability and it is unlikely a K-H unstable region. On the other hand, the low
latitude boundary is a favorable condition for the excitation of the K-H instability since the

strong northward dipole magnetic field is perpendicular to the ambient solar wind flows.

Non-linear behaviors have been explored by means of computer simulation. Miura
[1984,1992] examined the two-dimensional ideal MHD simulation of the K-H instability and
showed that the Reynolds stress, which transfers the momentum across the shear layer,
increases with time. If one permits a larger simulation domain the fastest growing mode
inversely cascades to the longer wave modes. This inverse cascade is characterized by the
vortex pairing and the emergence of a large isolated vortex (Wu, 1986; Miura, 1997; Miura,
1999). During the coalescence of the vortices the Reynolds stress increases and the momen-
tum is more effectively transported across the boundary layer in a larger simulation domain.
Those MHD simulation approaches have revealed that the momentum transport across the
shear layer by the K-H instability can satisfy the requirements of the viscous like interaction

as suggested by Axford and Hines[1961].

The recent progress in the computational ability enables the kinetic particle simulation to
follow the non-linear development and seeks out a unique feature in a collision-less plasma.
Hybrid simulations which treat the ion as a particle with the charge neutralizing electron fluid
and full particle simulations have been conducted to clarify mixing and transport mechanisms
of collision-less plasmas by the K-H instability (Pritchett and Coroniti, 1984; Terasawa et al.,
1992; Thomas and Winske, 1993; Cai et al., 1993; Fujimoto and Terasawa, 1994; Fujimoto
and Terasawa, 1995; Wilber and Winglee, 1995). Hybrid simulations (Terasawa et al., 1992;

Fujimoto and Terasawa, 1994) showed that the finite Larmor radius effect of the ions enhances



the mixing of plasma anomalously and suggested an effective mixture by a K-H vortex.
Thomas and Winske [1993] also reported the hybrid simulation study of a in-homogeneous
case and showed that the isolated structures on the order of the ion gyro radius are formed
which can across the boundary in either direction. They firstly suggested the mass transport
of the solar wind plasma by the K-H instability, although the physical mechanism of the
generation of the plasma blobs is still remained unsolved (see also, Huba, 1996b). Wilber
and Winglee[1995] demonstrated the full particle simulation of the K-H instability modeling
the dawn and the dusk LLBL. They pointed out a dawn-dusk asymmetry in the non-linear
development of the K-H instability which showed the vortex formation in the dusk side and
the tongues of magnetosheath plasma penetrating into the magnetosphere in the dawn side.
The asymmetry increases with decreasing the initial velocity shear width. This feature is
also reported by Huba[1996b] based on the MHD simulation including a finite Larmor radius
(FLR) effect of the ion. Hence the asymmetry should be attributed to the FLR effect of the

ion, but the detailed physical mechanism has been remained ambiguous.

It is quite recently that the combination of the magnetic reconnection and the K-H
instability has been incorporated in two- (Nykyri and Otto, 2001) and three- (Knoll and
Brackbill, 2002) dimensional ideal MHD simulations. Nykyri and Otto[2001] showed that the
magnetic reconnection is triggered in the non-linear stage inside the K-H vortex. The finite
component of the magnetic field parallel to the flow generates the multiple current sheets
inside the vortex and the magnetic reconnection takes place. As a result, the detached high
density plasma is transported from the magnetosheath. They suggested this mechanism
as a new transport process by the combination of the K-H instability and the magnetic
reconnection, while the diffusive property, which is often observed in the LLBL, could not

be reproduced.

In spite of the great efforts on the mass transport across the velocity shear layer, only a
few things have been understood and the formation mechanism of the LLBL is not clearly
understood. In this context the present dissertation again sheds the new lights on the Kelvin-
Helmholtz instability by showing that it must play a crucial role not only as a momentum

messenger but also as a mass carrier in theoretical and computational manners. What



is newly found in this dissertation is that the strong non-linear coupling of the various
instabilities within a K-H vortex triggers the onset of turbulence and the transport of dense
medium to the tenuous region in the spatially extended area. In addition, the electron mixing
process is investigated for the first time as well as the ion’s in the course of the turbulent
mixing. Even though the model is quite simple as compared to the actual situation in the
magnetosphere, the fast and spatially extended mixing process of collision-less plasma shown

here is quite noteworthy.
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CHAPTER 2

Cross-field diffusion across a homogeneous velocity

shear layer

To understand the basic linear and non-linear behavior of the K-H instability, numerical
and computational approach are used to examine for a homogeneous background field case

throughout this chapter.

2.1 Introduction

2.1.1 Magneto-hydro dynamic Kelvin-Helmholtz instability

Early theoretical efforts have been devoted to define the linear properties of the K-H in-
stability since the velocity shear boundary was found to be unstable by Helmholtz[1868]
and Kelvin[1871]. Linear theories identified the necessary conditions for the instability, the
mode structure, the growth rates and the wave number dependence of the K-H instability
for various mean flows of hydrodynamic phenomena (Helmholtz, 1868; Kelvin 1871; Chan-
drasekhar 1961). For the sake of simplicity, let now the velocity vary discontinuously, the
fluid is incompressible for a homogeneous fluid. In this circumstance it is always unstable
with respect to the K-H instability as long as the velocity difference exists. The growth rate
is derived as

7 = ki(U; — Uy), (2.1)

where, U; and U, denote the velocity of the two media moving relatively each other. Com-
pressibility, a finite boundary width and a surface tension force must act against the insta-

bility.

11



For the experimental plasma, space and astrophysical applications the K-H instability
must refer to magneto-hydro dynamics (MHD) in which magnetic field comes into play. In
the early era, most of the investigations assumed a zero thickness velocity shear boundary in
an incompressible plasma. For example, the linear stability results are given also by Chan-
drasekhar[1961], in which there is two points to be noted. If the plasma flow is perpendicular
to the magnetic field (transverse case), the magnetic field has no effect on the instability and
it is always unstable for all velocity jumps just as seen in hydrodynamics. If the plasma flow
is parallel to the magnetic field (parallel case), however, it acts for the stabilization. The
K-H mode is completely stabilized if the total velocity jump is less than twice the Alfvén
velocity. Physically, the tension force of magnetic field lines inhibit the growth of the K-H
mode as the surface tension force acts in the hydrodynamic case. Hence the orientation of
the magnetic field with respect to the flow is an important factor for the MHD application.
In the earth magnetosphere, whose interaction with the solar wind is the main topic in
this dissertation, the solar wind plasma is sheared at the magnetospheric boundary (mag-
netopause). At the high latitude boundary the solar wind direction is almost parallel to the
magnetic field which is called tail lobe region. The strong parallel magnetic field, which is
on the order of ten nano teslas, limits the condition of the excitation of the K-H instability
and it is unlikely an K-H unstable region. On the other hand, the low latitude boundary
is a favorable condition for the excitation of the K-H instability since the strong northward
dipole magnetic field is perpendicular to the ambient solar wind flows. That is the reason
why the author is motivated to put the target on the low latitude boundary and to focus on

mainly the transverse case throughout the present dissertation.

Non-linear development of the K-H instability in a MHD regime in the view of the magne-
tospheric interaction has been investigated by means of numerical simulation (Miura, 1984;
Wu, 1986, Miura, 1995). Miura[1984] quantitatively demonstrated that the Reynolds stress,
which increases in the course of the non-linear development the K-H instability, acts as an
anomalous viscosity, which becomes comparable to the Bohm diffusion and satisfies the re-
quirement in Axford and Hines’s[1961] hypothesis for a viscous-like interaction. Wu[1986]

and Miura[1997,1999] revealed that the larger simulation system allows more effective mo-
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mentum transfer across the boundary layer. The inverse cascade of the wave modes produces
the vortex paring that results one large vortex. During the coalescence of the vortices the
momentum is effectively transported across the boundary due to the large Reynolds stress.
By these investigations of the non-linear behavior the viscous interaction by the K-H in-
stability which Axford and Hines[1961] proposed for the first time have been accepted as a

possible mechanism for the momentum transport of the solar wind.

2.1.2 Kinetic treatments on the Kelvin-Helmholtz instability

Those magneto-hydro dynamical approach is valid only when

e the characteristic spatial scale is much larger than that of the ion gyro radius and the

inertia length, and

e the characteristic time scale is much slower than that of the ion gyro and plasma

frequency.

These conditions are not always valid, especially at the discontinuous boundary, such as, the
magnetopause. The thickness of the magnetopause boundary has been explored by the in-
situ observations. Berchem and Russell[1982] demonstrated the simultaneous observations
by ISEE 1 and 2 spacecrafts (Russell and Elphic, 1978) of the magnetopause crossings.
Statistical analysis showed that the thicknesses of the magnetopause are concentrated in the
interval from 400 to 1000 km which is only a few times thicker than the ion gyro radius.
Thus the validation of the MHD approach for understanding of the K-H development at such

a thin boundary is questionable.

In this context, a kinetic approach to the K-H instability is needed and a number of
challenges have been devoted for further understanding of the K-H instability in a kinetic
regime. Fujimoto and Terasawa[1991] showed the ion inertia effect on the linear growth of
the K-H instability by including the hall and the electron pressure term in the generalized
Ohm’s law. They concluded that although the growth rates are only slightly affected by the

ion inertia effect the structures of the eigen mode become highly different from the ideal
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MHD case. Ganguli et al.[1988] developed a nonlocal kinetic theory in a non-uniform dc
electric field. In a small wave number range the kinetic dispersion relation recovers the K-H
instability. In a large wave number regime, on the other hand, they found another branch of
the unstable mode they named ion-cyclotron (IC) like instability, whose unstable domain is
clearly distinctive from the K-H mode. This study was extended by Nishikawa et al.[1988]
by showing the non-linear development of the IC like mode by using the kinetic electrostatic
particle simulation. In the early 90’s the progress in computational ability enables the
researchers to follow the long time evolution of the K-H instability with a kinetic particle
simulation. Terasawa et al.[1992] showed, for the first time, anomalously fast ion mixing
within a K-H vortex with using a hybrid simulation. By treating an ion as a particle followed
by electron neutralizing fluids they revealed that the ions are scattered by a rotational part
of the electric field perturbation and the ions are mixed anomalously fast. Fujimoto and
Terasawa[1994] followed and extended Terasawa et al.[1992] and showed the similar result
but their interpretation is that the enhanced ion mixing takes place by the ion scattering at

the hyperbolic point in the shrinking phase of the K-H vortex.

By those kinetic treatments, although the unique properties of the K-H instability in a
collision-less plasma have became clear, the role of electron dynamics on the K-H instability
has remained ambiguous: How can the electrons strongly tied to the transverse magnetic
field follow the scattered ions? Do the electrons inhibit or enhance the ions scatter across
the magnetic field? The straightforward problems have remained unsolved until now. To
understand fully the evolution of the K-H instability in the view point of the mixture of
the collision-less plasmas, numerical and computational studies including the dynamics of

electrons are conducted in this chapter.

2.2 Linear analysis

In the early era, studies on the linear stability had been done with a discontinuous velocity
profile in the incompressible (Chandrasekhar, 1961) and compressible plasma (Sen, 1964;
Southwood, 1968; Pu and Kivelson, 1980), and with a finite thickness of the velocity profile
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in the limited Mach number (Ong and Roderick, 1972) until Miura and Pritchett[1982]
established the linear properties of the K-H instability for a hyperbolic tangent velocity
profile in a compressible plasma for the arbitrary direction of the wave number with respect
to the ambient magnetic field. For the kinetic treatment, Fujimoto and Terasawa[1991]
showed the ion inertia effect on the linear growth of the K-H instability. Based on their
results the linear analysis with the two fluids MHD equations including the electron mass is

examined to understand the modification of the linear growth rate by the electron inertia.

The growth rates and the corresponding eigen mode structures are obtained by solving a
set of two fluid MHD and Maxwell equations as an eigen value problem (Appendix A). The

initial conditions and parameters used in the analysis are

e Vs = Vy/2tanh (y/)),

B - (0, 0, Bo),

e P = constant,

Vo/VA == —10,

ﬂion = ﬁelectron = 015;

Wee/Wpe = 0.35,

AN =1.0

where the subscript ’s’ denotes the particle species, ion and electron, and Vo, V4, 8, Wee,
wpe, and A; denote a jump in velocity across the shear layer, Alfvén speed, plasma beta,
electron gyro frequency, electron plasma frequency, and ion inertia length, respectively. The
fourth condition guarantees the flows are sub-magnetosonic everywhere in the simulation
domain and the fast shock at the edge of the vortex will not be formed (Miura, 1984).
These parameters are chosen for the adaption to the simulation in the remaining part of this

chapter.

Figure 2.1 shows the growth rate with respect to the wave number in the x direction for a

various mass ratio of ion’s to electron’s which varies from 16 to 144. The solid line shows the
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result based on the ideal MHD equations. As seen in Fujimoto and Terasawa[1991], a finite
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Figure 2.1: The growth rates of the K-H instability are shown for various mass ratios,
16(dash), 64(dash-dot) and 144(dash-three dots) along with the result for the ideal MHD
case (solid). The abscissa shows the wave number in the x direction normalized by the initial

shear width and the ordinate shows the growth rate normalized by the factor \/V;.

electron inertia also only slightly affects the growth rate of the K-H instability. Figure 2.2
shows the eigen mode structure of the perturbed ion thermal pressure of the fastest growing
mode (FGM, Miura and Pritchett, 1982) for the mass ratio (A)16, (B)64, (C)144 and the
corresponding result of (D)ideal MHD’s. The white arrows indicates the vector plot of the
ion velocity which is a sum of perturbed and unperturbed velocity component. The color
intensity indicates the power of the mode and the abscissa and the ordinate shows the x and
y coordinate in the unit of the initial shear width. Although the strong modification of the
eigen mode structure by the ion inertia effect was reported in Fujimoto and Terasawa[1991],
the present two fluid MHD analysis exhibits little difference from the ideal MHD’s eigen

mode structure.
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Figure 2.2: Eigen mode structures of the perturbed ion thermal pressure of the FGM for the
mass ratio (A)16, (B)64, (C)144, and (D)the ideal MHD result. The color intensity indicates
the power of the mode and the abscissa and the ordinate shows the x and y coordinate in
the unit of the initial shear width. Perturbed and unperturbed velocity components are also
added on the figure with the vector plot of the white arrows. (Non uniform intervals between

the arrows in the y direction shown in (A)-(C) are due to the nonuniform grids adopted in

those calculations.)
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As a conclusion of the linear analysis, the electron inertia effect does not significantly
affects both the linear growth rate and the eigen mode structure of the K-H instability even

though the initial shear width is comparable to the ion inertia length.

2.3 Non-linear development of K-H instability

Non-linear development of the K-H instability is characterized by a momentum exchange
and a mixing of two media. While ion dynamics in the mixing process has been studied by
Terasawa et al.[1992] and extended by Fujimoto and Terasawa[1994] in which the finite ion
Larmor radius effect anomalously enhances the mixing rate, the process how the electron,
which is strongly tied to the transverse magnetic field, can trance the ion has been remained
ambiguous. In this section the mixing process of collision-less plasma during the non-linear
development of the K-H instability is explored by means of full particle simulation, which
fully solves ion and electron dynamics along with the electric and magnetic field (Birdsall

and Langdon, 1991; Hoshino, 1986).

2.3.1 Initial conditions of simulations

The schematic view of the initial setting of the simulation is shown in Figure 2.3. The
x component, of the velocity is sheared in the y direction. The uniform magnetic field is
oriented in the z direction and thus the thermal pressure is uniformly set in the simulation
domain. Particles are uniformly distributed in the simulation domain by using a cumulative

distribution function (Birdsall and Langdon, 1991) so that Gauss’ law

OE 0 (Vx(y)B,
B o= Sy _ 9 [ Yx)5
v oy oy ( c )

= dnq(n; — ne) (2.2)

is satisfied.

Choosing the number of particles per cell determines the balance between the computa-
tional resources and the accuracy of the calculation. We have tested the effect of the number

of particles on the evolution of the K-H instability. Figure 2.4 shows the time development
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Figure 2.3: The initial setting of the simulation

of the fastest growing mode for various number density. From Figure 2.4, the calculations
with more than 128 particles per cell almost express the same profile of the FGM. Therefore

we take N=128 in the following results unless otherwise specified.

We take a grid size which corresponds to twice the Debye length for relatively thick shear
cases (7gi/A = 2.0,4.0) and to the Debye length for a thin shear case (r4i/A = 1.0). Mass
ratio of the ion (M) to the electron (m) is set 16 throughout the paper due to the limited

computational resources.

Plasma parameters used in the following simulations are basicly similar to that shown in
section 2.2 except that the initial shear width, the orientation of the flow (sign of V;), and
the number of particles per cell are changed in the following subsections. The parameters

are summarized in Table 2.1.
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Figure 2.4: The effect of the number of particles per cell on the evolution of the K-H
instability. The figure shows time development of the y component of the perturbed ion
velocity, whose mode number corresponds to the FGM. The results are shown for N = 32

(open diamond), N = 128 (asterisk), and N = 256 (solid line).

2.3.2 Mixing rate

To quantitatively deal with the mixing process, a quantity, mixing rate, is defined as follows.
Particles which are initially located in the region y > 0 are numbered 1. Then as the
simulation proceeds the orbits of the particles 1 are followed. The occupation of the particles
1 are calculated at the grid points and we can obtain the occupation rate by calculating

N
Occupation rate = N” : (2.3)
%]

where N; ; denotes number of the particle at the grid point (i,j), and Ni(j-) denotes that of the
particle 1. The mixing rate is obtained by transforming the occupation rate in accordance
with

Mixing rate = —2.0 |Occupation rate — 0.5| + 1.0 (2.4)
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Table 2.1: Plasma parameters used in the simulations in this chapter.
Mrgi Vo/Va N Bion  Betectron M/m  wge/wpe subsection

4.0 -1.0 32 0.15 0.15 16 0.35 2.3.5

4.0 -1.0 128 0.15 0.15 16 0.35 2.3.3,2.35

4.0 -1.0 256 0.15 0.15 16 0.35 2.3.5
4.0 -1.0 512 0.15  0.15 16 0.35 2.3.5
2.0 -1.0 128 0.15 0.15 16 0.35 234

1.0 -1.0 128 0.15 0.15 16 0.35 234,236

1.0 +1.0 128 0.15 0.15 16 0.35 2.3.6

The conversion of the occupation rate to the mixing rate is summarized in Fig. 2.5. The
mixing rate is defined so that it takes the maximum value when the particle 1 occupies the

grid point equally with the other particle.

2.3.3 Non-linear development of the K-H instability for \/r,; = 4.0

Figure 2.6 shows the snapshots of the simulation result for A/rgi = 4.0. The color intensity
shows the occupation rate of the ion 1 and the contour lines show the electrostatic potential.
Figure 2.7 shows the similar snapshots as shown in Figure 2.6 but for the electron. Both
figures show the vortex motion of the K-H instability as expected from the MHD results.
In the linearly growing stage the FGM develops with the growth rate as expected from the
linear analysis. Figure 2.8 shows the time development of the FGM along with the result
obtained in the linear analysis. The dashed line shows the result obtained in the linear

analysis which justifies that the simulation result agrees well with the linear theory.

The mixing rate integrated in the simulation domain is examined to show how the mixing
area is broaden in the simulation domain. Figure 2.9 shows the time profile of the integrated
mixing rate normalized by the initial shear area LiA. It is to be noted from Figure 2.9
that both the ion and the electron mixing area increase with time as the K-H instability

develops. To elucidate how the electron mixing area as well as the ion’s increases in spite of
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Figure 2.5: The relation between the occupation rate and the mixing rate.

the small gyro radius, the orbits of the ions and electrons are traced during the simulation
run. Shown in Figure 2.10 and Figure 2.11 are the typical (A)orbit in the simulation domain,
time development of (B)the y coordinate and (C)the x coordinate, and (D)the orbit in the
phase space. As shown in Fig. 2.10(A) and 2.11(A) both the ion and electron shows the
hydrodynamical orbits which are characterized by a E x B drift. Figure 2.12 and 2.13 show
the snapshots of the mixing rate which correspond to the Figure 2.6 and 2.7. As time proceeds
from the top left panel (t = 62.16\/V,) to the bottom right panel (t = 207.19A/V,) both
figures indicate that the most mixed region appears along the boundary which is stretched,
folded and deformed in the course of the non-linear development of the K-H instability.

Figure 2.14 shows the time profile of the average mixing rate for (A)the ion and (B)the
electron as a function of the x coordinate. The average mixing rate is obtained by integrating
it in the y direction normalized by the value integrated in the simulation domain at each
time steps. Thus the average mixing rate as a function of the x coordinate indicates the
contribution of the mixing rate in the x direction to the total value at each time steps.

In the linearly growing stage from t =0 to t = 100A/V, most of the contribution of the
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Figure 2.6: Snapshots of the simulation result for A\/ry; = 4.0. The color intensity indicates
the occupation rate calculated in accordance with eq.(2.3). The contour lines show the

electrostatic potential whose equipotential lines approximately indicate the fluid stream lines.
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Figure 2.8: Time development of the FGM (solid line with asterisks) is shown in the same

format of Figure 2.4. The dashed line shows the result obtained in the linear analysis.

mixing rate to the total value takes place within the region x = 0 ~ 8\ in both the ion and
the electron results, which means that it takes place within the K-H vortex. In the early
non-linear stage from t = 100 to t = 180, although the most mixed region within the K-H
vortex is not clear as can be seen in the linear stage, the contribution of the mixing rate
within the vortex is a main part. In the late non-linear stage from t = 180 to the end of the
simulation run the contribution of the mixing rate is uniformly distributed in the x direction.
This phase corresponds to the diffusive phase as indicated by Fujimoto and Terasawa[1994].
Figs. 2.9-2.14 indicate that the increase in the mixing area shown in Figure 2.9 is a result
of the stretched path length of the boundary layer in the course of the linear and non-linear

development of the K-H instability.

From these results the increase in the mixing area can be modeled by the following mech-
anisms. Initially, the classical diffusion perpendicular to the demarcation line is dominant

since there is no evident increase in the length of the demarcation line. The next stage
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Figure 2.9: Time profile of the integrated mixing rate for the ion (cross) and the electron
(open square). The abscissa shows the time normalized by the factor \/V, and the ordinate

shows the integrated mixing rate normalized by the initial shear area L.

is contributed mainly by the increase in the length of the demarcation line. The lateral
diffusion is also operative in this stage in the old boundary as well as in the newly gener-
ated boundary. Incorporating these mechanisms the total mixing area at a time t can be

expressed as follows.

: di(t Codi
Smia(t) = Lo Dﬂe+/0 \/DL(t—t')%dt’—k/o r, Cgt)dt'—FLwrg, (2.5)

where D, is the cross-field diffusion coefficient, L, is the wave length of the FGM, I(t) is

the increment of the path length of the demarcation line which is a function of t, and r, is
the thermal gyro radius of the particle. The first term in the right-hand side of the equation
represents the “old” boundary in which particles are diffused with time. These particles
consist mainly inside the K-H vortex. The second term represents the generation of the new

demarcation line along with the lateral diffusion. In the new boundary particles are also
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Figure 2.10: (A)The orbit in the simulation domain, (B)the time development of the y
coordinate and (C)the x coordinate, and (D)the orbit in a phase space are shown. The
coordinate x and y are normalized by the initial shear width A, the time is normalized by

the parameter \/V;, and the velocity is in the unit of the speed of light.
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Figure 2.11: Same profiles as shown in Fig. 2.10 but for the electron.
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Figure 2.12: Snapshots of the ion mixing rate are shown in the same format of Fig. 2.6.
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Figure 2.13: Snapshots of the electron mixing rate are shown in the same format of ion’s in

Fig. 2.6.
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Figure 2.14: The time profile of the average mixing rate for (A)the ion and (B)the electron
as a function of the x direction is shown by the color intensity. The average mixing rate is
obtained by integrating the mixing rate in the y direction normalized by the value integrated
in the simulation domain at each time. The abscissa shows the normalized x coordinate and

the ordinate shows the normalized time.
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diffused in the perpendicular direction and contribute to the increase in the mixing area.
The last two terms represents the offset of mixing area with the scale of gyro radius. From

eq.(2.5) the normalized mixing area is obtained as

s (T) = % = \/;0<\F+/ WdL(T')dT'> 7} (/OT dLgl)dT'H) (2.6)

where T represents time normalized by the factor A\/V; and L(T') is the length of the newly
generated demarcation line normalized by the wave length of the FGM L, =~ 16\. The
second term on the right-hand side of the equation has the highest order of T and thus the
normalized mixing area is weakly dependent on the dimensionless parameter D, /(AV;). The
increase in the mixing area is mainly contributed from the generation of the new boundary.
This is expressed by the term dL/dT whose exact functional form is not obtained. In the
early stage (T'= 0 ~ 75), dL/dT can be related to the linear growth of the K-H instability
and be expressed in the functional form of dL/dT =~ exp (Viz1)T)—1. In this approximation,

inserting it to eq.(2.6), one finds

Dy 1 2 NZ3
S (T = 1— VT — T3 + exp (Ymiz(yT) ET miz(1)T
’I”gz' 1
—= exp (Ymiz()T') — —-T+ 1) , 2.7
A (erzz(l) ( M ) Ymiz(1) ( )

where Erf(t) is the error function and is defined as

Erf(t) \/_/ exp (—z%)d. (2.8)

Then mixing rate is fitted by using eq.(2.7) with two free parameters, D and ypiz). Figure
2.15 shows the result of fitted curve line (solid green) and the simulation data for the (A)ion
and (B)electron. The two free parameters are determined by using the simulation data from
T = 0 ~ 75 and the curve is extended to 7" = 160. As results the function of eq.(2.7) well
fits with the data and the free parameters are obtained for the ion, D) /AV, = 2.3 x 1075,
Ymiz(1) = 7.3 x 10~* and for the electron, D, /AVy = 3.1 x 107*, Ynipay) = 1.1 x 107, While
the Ypiz(1) does not change in order in magnitude between the ion and the electron profiles,
the electron diffusion coefficient D is about ten times larger than that of the ion, indicating

that the electron effectively gains the mixing area. To compare with the results obtained
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above, here we introduce the diffusion coefficient of the lower-hybrid mode as (Treumann et

al., 1991)
1 2
T\ 2 m; w [ Wydk
Dip=(<) — |1+ 2 2.
L (8) me< +Q§e> nkgT; WLHT ge; (29)

where (275 is lower hybrid frequency, 7,4, is the electron gyro radius, nkgT; is the ion thermal

energy density, and Wj, is the field energy of perturbed electric field of the k-th mode and

defined as
2 k22 \ SE2
W = 1 the k 2.10
* ( QQ><+W%H>87T’ (210

where v;p; is the ion thermal speed. Using the simulation parameters and data, we obtain

Drp/\Vy ~ 1072 (2.11)

which is about 10 times larger than the electron diffusion coefficient obtained from the above

fitting result.

ion electron
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Figure 2.15: Time profile of (A)ion and (B)electron mixing rate with fitted curve lines (solid

green) are shown in the same format of Fig.2.9.

In the late stage (T = 75 ~) the mode amplitude is saturated as was seen in Figure 2.8,
and dL/dT can be expressed as a constant. In this approximation one finds the time profile

of the mixing area as

DJ_ Tgi
! 1 i T) 2 vz T + 1 2.12
Smia(T') = /\VO\/_<+ < Ymiz(2) +A(7 oT+1), (2.12)
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where 7,i5(2) represents the stretching speed of the demarcation line and here we assumed

dL/dT = Ymig(2)- In this stage, the mixing area increases with time with a functional form

of ~ T3/2,

2.3.4 Simulation results for various \/ry

From eq.(2.6), the mixing area should be scaled to the parameter \/m if the demar-
cation line self-similarly develops, i.e., the path length of the demarcation line is the same
if one sees in the normalized unit. Figure 2.16 shows the snapshots of the mixing rate of
the ion in each simulation runs for A/ry = (A) 1.0, (B) 2.0, and (C) 4.0 with a fixed V4.
As is evident from Figure 2.16, the structure of the K-H vortex is similar in each other

if one sees them in the normalized unit of space A and time A/Vj. Figure 2.17 shows the

Alrgi=1.0 Alrgi=20 Alrgi=4.0

95.81 87.02 82.87

y(A)
y(A)

Figure 2.16: The snapshots of the mixing rate of the ion in the simulation runs of A\/r, =
(A)1.0, (B)2.0 and (C)4.0 are shown. Figures show the same stages of the K-H instability,
each of which are taken at t = 95.31, 87.02, 82.87(\/V}), respectively.

integrated mixing rate for the various initial shear width for (A)the ion and (B)the electron.
The mixing area saturates earlier in the thinner initial shear width case but the mixing area
is weakly dependent on the initial shear width A as was indicated by eq.(2.6). This can

be explained alternatively by the following idea. In the normalized unit of time, the K-H
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instability develops similarly and the same snapshots of the vortex evolution are obtained in
a hydrodynamical regime. If one incorporates the diffusion across the magnetic field at the
same time, the resultant picture is not obtained similarly. Here, we compare the case with
the initial shear width A\; and Ay with a fixed velocity jump 1} assuming a constant diffusion
coefficient D ;. For a normalized time T, the time in which particles experience the gyro

motion in each cases are expressed as

th =T 2.13

1= (2.13)
Ag

ty = 2T 2.14

2= (2.14)

<Az5> = Dity=D, =T (2.16)

VAN 2 < Aﬂ?% > Ao
= =4/ 2.17
A:vl < A.ZC% > A1 ( )

Thus, we cannot obtain the same picture of the K-H instability at a normalized time T if

From these equations, we have

we incorporate the particle dynamics. Figure 2.18 shows the width of the ion mixing area at
the demarcation line sliced vertically at (A)z = 12.5) and (B)z = 6.25) in each simulation
runs as indicated by the white vertical lines in Figure 2.16. The y coordinate is instead
normalized by ion thermal gyro radius. At x = 12.5) the mixing areas almost coincide with
each other with a scale of ion thermal gyro radius. On the other hand, at z = 6.25) inside
the vortex, they no longer coincide with each other and the width of the mixing area is
wider in larger A and the width is scaled to v/\ rather than \. This difference comes from
the “age” of the demarcation line. The mixing is just started at the hyperbolic point of
the flow and the longer diffusion process is operative in the older demarcation line inside
the vortex. Figure 2.19 again shows the time profile of integrated mixing rate of the case
A/rgi = 1.0,2.0 for (A)the ion and (B)the electron. Additionally, the red and green lines are

shown. These two color lines show the result of the case A\/ry, = 4.0 multiplied by a factor
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Figure 2.17: Mixing rate for the various initial shear width for (A)the ion and (B)the electron.

\/ Ao/ A, where \g = 4ry;. It is clearly shown that the integrated mixing rate for both the ion

and the electron is inversely scaled to square root of the initial shear width .

2.3.5 Electron mixing process

Returning to Figure 2.9, one can confirm that the electron mixing area effectively follows
the ion’s in spite of its small gyro radius. To explore how the electrons can effectively mix,
the number of particles per cell is changed from N=32 to N=512 to reduce the electric field
fluctuation by the statistical noise due to the finite particle number in calculating the electric
current density as well as in the electric charge density. Figure 2.20 shows the snapshots
of the electron mixing rate taken at ¢ = 82.37(\/V;) for each numbers of particles. The
result for N=32 is somewhat too noisy and is not treated accurately enough as was revealed
in Fig. 2.4. However, the result obtained in the simulation with more than N=128 show
the similar profiles. As results, the time profile of the electron integrated mixing rate shows

almost the same as shown in Figure 2.21. (The result for N=512 is not completed due to
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Figure 2.18: The sliced cuts of the mixing rate are shown for A/ry, =1.0(black), 2.0(green),
4.0(red) to compare the width of the ion mixing area. The cuts are taken at (A)r = 12.5\
and (B)z = 6.25\ as indicated by the white vertical lines in Fig.2.16.

its large computational resources and the limited CPU time.) It is notable that the diffusive
mixing inside the vortex is enhanced in all simulation runs. To find out what causes the
lateral diffusion inside the vortex, the energy spectra of the x component of the electric
field are taken in the x direction and averaged in the y direction from —3.32()\) to 3.32()).
Figure 2.22 shows the spectra taken at ¢ = 82.87(\/Vj). Except the case of N=32, the
simulations well express the scale k;A = 0 ~ 5, beyond which is affected by the particle
number and fundamentally artificial. The modes within a scale k,A = 1 ~ 5 is, however,
slightly enhanced in all simulation runs. Looking more carefully in Fig. 2.20 the deformation
of the demarcation line itself is observed in all simulation runs as zoomed in the white frame.
The characteristic scale of this structure is about one A which can be related to the mode
kzA = 6.28. The structure’s scale is slightly smaller than the enhanced mode suggested in
the energy spectrum. Since the reduced artificial noise does not strongly alters the electron
mixing profile for the N=>512 case, these modes may deform the structure of the demarcation
line. The generation mechanisms of the structure, however, could not be identified in the

present, simulations.
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Figure 2.19: Time profile of the integrated mixing rate for the case A\/ry = 1.0 (cross), and
A/rgi = 2.0 (asterisk) for (A)the ion and (B)the electron. Additionally, the red and green

lines are shown. These two color lines show the result of the case A\/r, = 4.0 multiplied by

a factor {/Ao/A, where \g = 4ry;.

2.3.6 Thin shear cases (\/rgi = 1.0)

In a thin boundary layer the difference in the motion between the ion and the electron cannot
be negligible and their mixing area develop differently. In this regime, new parameters
become important and are introduced for the initial setting along with the hydrodynamical

parameters. The one defines the shear direction and is expressed as
B-(VxYV) (2.18)

and the other parameter defines the shear strength

1 0V,
. 2.19
a5, (219
The simulation results shown previously have the parameter range
B-(VxV)>0 (2.20)

and therefore generally one calls this case “positive shear”. The “negative shear” is the case
in the range

B-(VxV)<0. (2.21)
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Figure 2.20: Snapshots of the electron mixing rate taken at ¢t = 82.37(\/V}) for each numbers
of particles are shown. Meandering structure of the electron demarcation line is zoomed in

the result with N=512.
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Figure 2.21: Time profile of the electron integrated mixing rate for various particle numbers.
The result for N=512 is not completed due to its large computational resources and the

limited CPU time.

In a MHD regime “positive” or “negative” does not have any significance and the results are

| Lo
Qgi Oy

mirrored images. However, in a strong shear regime, | > 1, “positive” or “negative”
is an important factor which will be verified in the following simulations. The results will
be shown and discussed firstly for the positive shear case and after that the negative shear

case will be presented. In both simulations we adopted

1
Qgi ay

| =1.29. (2.22)

(In chapter 4 the difference in the non-linear development of the K-H instability between in
the positive and the negative shears is discussed and it is shown that the shear direction is

important even in the MHD regime in a stratified shear layer.)
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Figure 2.22: The energy spectra of the x component of the electric field normalized by the
plasma energy density are shown for each particle numbers. The abscissa shows the wave

number in the x direction normalized by the initial shear width .

2.3.6.1 positive shear

Figure 2.23 shows the snapshots of the occupation rate of the ion 1 (left column) and the
electron 1 (center column) with the z component of the magnetic field (right column). The
vector plots of the black arrows in the B, profiles show the electric current density. As can
be seen in the figure, the electron vortex rotates faster than that of the ion and accordingly,
the electric current density flows inside the hole of the magnetic field. This difference can be
confirmed in the linear stage since the perturbed magnetic field separates the motion between
the ion and the electron. Figure 2.24 shows the eigen mode structure of the perturbed ion
thermal pressure with the vector plot of the perturbed electric current density. Since the
temperature ratio of the ion to the electron is one in the present linear analysis and in the
simulation, particles drift with the equal speed so that the resultant current density satisfies
the relation V x B = 4x/c j, which can be confirmed in the Figure 2.24. In this situation
the ion drifts clockwise and the electron drifts counterclockwise. Hence, the electron flows

faster than the ion. Figure 2.25 shows the y component of the perturbed ion (asterisk)
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Figure 2.23: The snapshots of the occupation rate of the ion 1 (left column) and the electron
1 (center column) with the z component of the magnetic field (right column). The vector
plots of the black arrows in the B, profiles show the electron velocity difference from the

ion’s (Vi — V). From the top to the bottom panel snapshots are taken at t = 62.16A/V,,
t = 82.87A\/Vy, t = 103.59)/ V.
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Figure 2.24: The K-H eigen mode structure of the perturbed ion thermal pressure with the

vector plot of the perturbed electric current density.

and electron (open square) velocity along with the linear analysis result (dashed line) for
A/rgi = 1.0. While the eigen mode of both the ion and electron velocity grows with the same
rate as expected from the linear analysis, the amplitude of the electron velocity is about 16%
larger than that of the ion: the electron gets more speed by the perturbed magnetic field.
The pattern of the magnetic field, which shows the hole structure inside the vortex and the
built up region at the hyperbolic point, is formed as follows. At first the flow is accelerated
by the perturbed pressure of the K-H mode in the y direction and the fluid element starts
rotating. Thus the fluid element feels centrifugal force during the rotation which results
the rarefaction and makes a hole of magnetic field and thermal pressure. The structure of
the vortex is therefore maintained by the force balance between the rotational centrifugal
force and the centripetal force of the sum of thermal and magnetic pressure. Built up region
at the hyperbolic point is due to the encounter of the two incoming flows which results a
compression of plasma. This compressibility in plasma and the development of the instability

reproduces the in-homogeneity which separates the motion of the ion and the electron.
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Figure 2.25: The y component of the perturbed ion (asterisk) and electron (open square)

velocity along with the linear analysis result (dashed line) for A/ry = 1.0.

2.3.6.2 negative shear

In a strong negative shear layer it has been reported that the K-H instability does not
develop easily due to the technical difficulty in finding a exact initial condition for a particle
simulation (Cai et al., 1990; Cai et al., 1993a; Pritchett, 1993). Cai et al.[1990] showed that

the kinetic equilibrium is different in a positive and a negative shear layer if the velocity

shear is strong enough (Q%id(};" >> 1). They explained that this difference comes from the
difference in the potential (non-uniform electric field) structure. Ions in the a positive shear
around the origin are in stable equilibrium while ions in negative shear are in unstable
equilibrium whose orbits diverge away from the shear layer. Due to its unstable orbit of the
ion, the velocity shear is relaxed within a few gyro motions and as a result the K-H mode
is stabilized. Pritchett [1993] carried out electrostatic particle simulations for a negative

shear case. He used the initial particle loading method developed by Cai et al.[1990] and the

modified temperature in the maxwell distribution function proposed by Ganguli et al. [1988]
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and compared the linear growth of the K-H instability with the standard particle loading
with the maxwell distribution. He found in a negative shear case no development of the K-H
mode with the standard loading but found an improvement in the growth of the mode with
using methods of Cai et al [1993] and Ganguli et al. [1988] although the resultant growth
rate is reduced from that expected from the linear analysis. In the following simulation,
Gaunguli’s modified temperature is adopted for the initial loading of the ions.

Figure 2.26 shows the time development of the FGM along with the result of the positive
shear case. The dashed line shows the linear growth obtained by the linear analysis. As
reported by the past researches, the FGM weakly develops as compared to the result in the

positive shear case. Figure 2.27 shows the snapshots of the occupation rate of the ion 1 and
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Figure 2.26: Time development of the FGM is shown for positive (asterisks) and negative

shear (open diamond) case. The dashed line shows the result obtained in the linear analysis.

the electron 1. As shown in the figure, ions are quickly diffused over the scale of the velocity
shear layer due to their unstable orbits. On the other hand electron does not suffer from the

potential structure because of its small gyro radius. However, the diverged orbit of the ion
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inhibit the development of the K-H instability and therefore electron mixing area does not
strongly increase. This nature is clearly shown in Figure 2.28. Figure 2.28 shows shows the
time profile of the integrated mixing rate for the (A) ion and (B) electron. The results show
the cases for the positive shear (asterisks) and for the negative shear (open diamond). In the
ion profile (A) of the negative shear case, ions are quickly diffused in the scale comparable
to the K-H vortex size in the positive shear case. This is due to the diverged orbit of the
ion. On the other hand, the electron mixing area of the negative shear case is inhibited due
to the inhibited K-H vortex size. These results are consistent with the past researches that
have indicated that the K-H mode does not strongly develop in the strong negative shear
due to the ions’ unstable orbits. Furthermore, the electron mixing area is strongly inhibited

by the weak development of the K-H mode.

2.4 Summary and discussion

Full particle simulations of the Kelvin-Helmholtz instability in a uniform background field
are conducted in this chapter. Although the finite Larmor radius effect of the ion is expected
to enhance the mixing rate, the enhancement of the mixing rate in both the ion and the
electron suggests that most of the well mixed region is dominated along the interface of
the two plasmas which is stretched, folded, and as a result, deformed in the course of the

development of the K-H instability.

The plasma mixing process proposed in this chapter consists of two mechanisms. The
one is the generation of the new boundary by the development of the K-H instability. The
total amount of the mixing area is mainly contributed from this process. At the same time,
the cross-field diffusion perpendicular to the boundary is also operative. From the simple
modeling of the mixing area, we found that it is scaled to \/m and the time dependence
as ~ T3/2 or higher.

The electron mixing is also investigated. As a result, the electron mixing area follows
the ion’s, which means that the electrons can mix more effectively. Examining in detail, the

energy spectra of the electric field suggest that the modes kA ~ 5 are slightly enhanced.
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Figure 2.27: Snapshots of the occupation rate for the ion (left column) and electron (right
column) for the strong negative shear layer.
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Figure 2.28: Time profile of the integrated mixing rate for (A) the ion and (B)the electron
for the negative shear case (open diamond). For the comparison, the results obtained in the
positive shear case are also shown in each panels (asterisks). The abscissa shows the time
normalized by the factor A\/V, and the ordinate shows the integrated mixing rate normalized

by the initial shear area Ly\.

The fine structures of the demarcation line appeared inside the vortex, whose characteristic
scale likely corresponds to the modes observed in the energy spectra. This deformation of
the demarcation line gains the new mixing area that may contribute to follow the ion mixing
area. However, the generation mechanisms of the small scale structure which appears only in
the electron mixing area could not clearly understood. For this explanation, the numerical
heating due to the finite spacial grid size can be operative for the mixing (Birdsall and
Langdon, 1991; Hockney, 1971). We estimated the heating time ( at which the temperature
becomes twice) for the case N=512 and obtained Tj,cq; =~ 3000\ /Vp, which is much larger than
the time scale of the present simulations (Txpy ~ 200A/V;). Hence the numerical heating
is unlikely effective for the mixing process. Alternative explanation can be related to the
fundamental cross-field diffusion process of plasmas. Okuda and Dawson [1973] studied
the plasma cross-field diffusion for a wide range parameter of wg,/wye, where w,, and wg
are the electron plasma and gyro frequency. In a weak magnetic regime, (wge/wpe)? << 1,

which is the case of the present simulations, the diffusion coefficient obeys the classical
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collisional theory. In this regime the most of the fluctuated field energy is in the upper- and
lower-hybrid waves and in Bernstein waves. Furthermore, they also reported the anomalous
electron transport. This process is lead by the convective mode which was derived by the
two fluid equations in a thermal equilibrium. The convective motion enhances the electron
diffusion whose diffusion coefficient is similar to that obtained in the Bohm diffusion. The
identification of this anomalous electron diffusion as a generation mechanism which enhances
the electron mixing area, however, was not successful in the present study and the further

understanding of this kind of problem will be explored continuously as a future exercises.
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CHAPTER 3

Turbulent mixing and transport across a stratified

velocity shear layer

3.1 Introduction

Where there is a velocity shear, there is usually a density interface. A representative ex-
ample, on which the present dissertation is focusing, is the interaction between the shocked
solar wind plasma and the tenuous magnetospheric plasma at the Earth. The earth’s mag-
netosphere shields the shocked solar wind plasma which is separated across the boundary,
"magnetopause”. In-situ observations, however, have revealed that the plasma which fills
the plasma sheet is originated mainly from the solar wind (Fig. 1.5) even though the frozen-
in condition seems to be valid around the earth. Hence, the route to the magnetosphere
has been a major issue in the magnetospheric physics. To explain the magnetospheric in-
teraction with the shocked solar wind, two models have been proposed. One is the ”"open
magnetosphere model” by Dungey [1961], which incorporates the reconnection of the earth’s
dipole magnetic field lines with the interplanetary magnetic field (IMF) lines (Fig. 1.6, left
panel). The other model is the ”closed magnetosphere model” by Axford and Hines [1961],
which suggested that a viscous interaction along the flanks of the magnetosphere can permit
the solar wind momentum to diffuse onto closed magnetospheric field lines and the resultant
tail ward flows is closed by the returning earthward flow in the center of the tail(Fig. 1.6).
In-situ observations have showed the evidences of the reconnecting field lines (e.g., Phan et
al., 2000) and the resultant convecting plasma flows inside the magnetosphere(e.g., Nishida
et al., 1996). Nowadays the former has been widely accepted as a standard model in the

case of southward IMF while the situation is less clear when the IMF is northward.
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Several authors (Fairfield et al., 1996; Baumjohann et al. ;1989; Lennartsson, 1992) have
noted that the aspects of the plasma sheet are controlled by the geomagnetic activity, which
likely corresponds to the orientation of the IMF. Particularly, the plasma sheet often reveals
it’s feature which cannot be explained by the Dungey’s model in the case of northward IMF
(Terasawa et al., 1997, Borovsky et al., 1998, Wing and Newell, 2002; Nishino et al., 2002).
Terasawa et al. [1997] studied statistically on the properties of the plasma sheet during the
periods when the northward IMF dominates. They reported two important results; (1) the
plasma sheet becomes significantly cold and dense, whose aspects resemble the solar wind
plasmas (Fig. 3.1). (2) the plasma is colder and denser near the dawn and dusk flanks

of the plasma sheet rather than in the central region. Their result (1) suggests that the

Figure 3.1: IMF dependence of plasma sheet temperature (left) and density (right) as a

function of the solar wind kinetic energy is shown. Adopted from Terasawa et al. [1997].

solar wind plasma is transported without heating by the reconnection as Dungey’s model
proposed, and the result (2) suggests that the solar wind plasma can directly penetrate
into the magnetosphere through the flank region of the tail. The idea of the tail flank

region as a primary transport region has been proposed by several authors (Eastman et al.,
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1985; Lennartsson, 1992; Fujimoto et al., 1998). Fujimoto et al. [1998] reported the in-situ
observation of the low-latitude boundary layer (LLBL) in the near-earth tail flanks, where
two populations of high and low energy ions are observed simultaneously (Fig. 3.2). The
simultaneous observation of high and low energy plasmas indicates the mixture of the plasmas
originated from the magnetosphere and the solar wind and the effective transportation across
the low-latitude flank magnetopause.
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Figure 3.2: The E-t diagram for omni-directional ions (bottom) and electrons (top) observed

by Geotail spacecraft. Adopted from Fujimoto et al.[1998].

In contrast to the rich knowledge on the observation of the high-latitude entry process by
the reconnection, less is known about the structure of LLBL as well as the entry process via
the low-latitude boundary region. Previous crossings of the low-latitude flank magnetopause
have indicated the presence of a boundary layer( Sckopke et al., 1981; Mitchell et al., 1987;
Phan et al., 1997). Mitchell et al. [1987] pointed out a dependence of the topology of the
LLBL on the orientation of the IMF. They found that the LLBL is on closed field lines for
northward IMF but is on a combination of closed and open field lines for southward IMF.
Sckopke et al. [1981] found that the LLBL is always attached to the magnetopause but its
thickness extends to a spatially large scale. They suggested that the boundary layer may be

a result of the Kelvin-Helmholtz (K-H) instability at the inner edge of the boundary layer.

The shocked solar wind plasma flowing past the magnetosphere provides a velocity shear

whose situation is favorable for the excitation of the K-H instability. Hence, the K-H in-
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stability has been considered to be a major contributor to the formation of the LLBL and
the mechanism of the direct transportation of the solar wind plasma across the low-latitude
boundary. The evidences of the K-H instability growing at the low-latitude boundary have
been reported by several authors (Hones et al., 1981; Ogilvie and Fitzenreiter, 1989; Seon et
al., 1995; Fairfield et al., 2000). Hones et al. [1981] showed the data indicating the vortical
flows which are clockwise in the morning side and counterclockwise in the evening side of
the plasma sheet. They believed that the vortical motions are attributed to the excitation
of the K-H instability. Recently, Fairfield et al. [2000] reported the detailed event study
of the observation of the K-H instability by comparing with their companion paper of the
Magneto-Hydro dynamic (MHD) simulation ( Otto and Fairfield, 2000). They argued that
the multiple crossings of the boundary are due to a K-H wave at the boundary and concluded
that the low-latitude boundary of the flanks are K-H unstable and the K-H instability must
be an important process for transferring energy, momentum and particles to the magnetotail

during times of very northward IMF.

The K-H instability at the magnetospheric boundary has been studied by nonlinear MHD
simulations (Miura, 1984, 1992 1995; Wu, 1986; Otto and Fairfield, 2000). Miura [1992]
have demonstrated the momentum transport across the boundary by the anomalous (eddy)
viscosity which is arisen by the non-linear evolution of the K-H instability and concluded that
the K-H instability can be a major contributor for the viscosity as Axford and Hines [1961]
suggested. It is only recently that the MHD and kinetic particle simulations have attempted
to explain the K-H instability not only as a source of momentum but also as a source
of mass ( Terasawa et al., 1992; Thomas and Winske, 1993; Fujimoto and Terasawal994;
Fujimoto and Terasawa, 1995; Wilber and Winglee, 1995; Huba, 1996b; Nykyri and Otto,
2001 ). While the finite gyro radius effect of ions is expected to enhance the mixing rate in
time in homogeneous background (Terasawa et al., 1992), in-homogeneity in magnetic field
suppresses the mixing which was observed in the homogeneous case (Fujimoto and Terasawa,
1995). Thomas and Winske [1993] also reported the simulation study of a in-homogeneous
case and showed the isolated structures on the order of the ion gyro radius are formed which

can across the boundary in either direction, although the process cannot explain the diffusive
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structure as often observed in the low-latitude boundary layer introduced above. The similar
isolated structure was reproduced by the MHD simulation (Nykyri and Otto, 2001) which
incorporates the component of the magnetic field parallel to the ambient flow. The detached
isolated magnetic island containing the solar wind plasma is produced by the reconnection
inside the vortex. Huba [1996] reported the simulation result based on the finite Larmor
radius (FLR) MHD equations in a non-uniform background field. The FLR effect introduces
the asymmetry in the non-linear development which is dependent on the sign of B - €2, where
) denotes the vorticity. He suggested an asymmetrical evolution of the K-H instability in
the dawn and the dusk side of the magnetotail flanks. In spite of the great challenges by
researchers with using both MHD and kinetic particle simulations, no one has succeeded in
the transport over the K-H vortex size and the explanation of the broad mixing layer lying

in the low-latitude region of the earth magnetosphere.

In this context, the remaining candidate mechanism for explaining more efficient mixing
is “turbulence”. It is well known that turbulence enhances the mixing and is generated by
a three-dimensional hydrodynamical K-H instability (Lasheras and Choi, 1988; Fritts et al.,
1996; Palmer et al., 1996). Fritts et al. [1996] demonstrated the comparison of the non-
linear development between two- and three-dimensional K-H instability in a stratified shear
flow. The stratification introduces the secondary instability in the non-linear stage of the
three-dimensional K-H instability. Then longitudinal vortices along with the K-H vortices
are generated. Though the numerous experimental studies have shown the excitation of the
secondary instability along with the normal K-H vortex (Thorpe, 1985; Lasheras and Choi,
1988), the excitation mechanism is still controversial ( Pierrehumbert and Widnall, 1982; Lin
and Corcos, 1984) since the huge computational resources are required for the detail study
on the onset of turbulence because of its strong non-linearity. In a MHD regime, magnetic
field acts for a suppression of a primary and/or secondary instability. In the situation of the
low-latitude boundary of the earth introduced above, the tension force of transverse magnetic
field is expected to inhibit the generation of the longitudinal vortex. Hence, the problem is
fundamentally two dimensional and the generation of turbulence has not been reported in

such a situation. In this chapter we show, for the first time, the onset of turbulence from a
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normal K-H vortex in a two-dimensional plane. We also propose the mechanism for obtaining
the enhanced mixing layer, which can be applied to a variety of situations in particular to

the interaction between the solar wind plasma and the earth’s magnetosphere.

3.2 Situation in consideration

Figure 3.3 shows the typical crossing of the low-latitude boundary of the earth observed by
the Geotail spacecraft (Nishida, 1994). From the top to the bottom panel, shown are the
absolute value and three vector components of the magnetic field, the plasma (ion) density,
temperature and the x (GSM coordinate) component of velocity. The vertical thick dashed
line indicates the boundary which separates the solar wind (specifically, magnetosheath; left
side) and the magnetosphere (plasma sheet; right side). In the bottom panel, one can confirm
the velocity shear across the boundary which is a free energy for the excitation of the K-H
instability. (However, parallel components of the magnetic field, i.e., Bx and By are supposed
to be suppressing the K-H instability in this event. See more details in chapter 2 on the effect
of the parallel component of the magnetic field on the linear growth of the K-H instability.)
It is to be noted that the jump in the plasma density and temperature is on the order of
two while the strength of the magnetic field fluctuates only in a few nano-teslas across the
boundary. This characteristics motivate the author to study how in-homogeneity in plasma
affects the non-linear evolution of the K-H instability by using computational approaches.
The basic simulation geometry shown in this chapter is summarized in Fig. 2.3. Note that

in the present simulations
e the x component of velocity is sheared in the y direction,
e transverse magnetic field is uniform unless otherwise specified,

e and density and temperature vary in the y direction so that the pressure balance is

maintained.

The last item is the main topic in this chapter and will be proved to be important for the

large extent of the mixing layer as well as for the onset of turbulence.
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Figure 3.3: An observation of LLBL by Geotail spacecraft on March 29 in 1995. From the
top to the bottom panel shown are the absolute value and three vector components of the
magnetic field, ion density and temperature, and the x component of the ion velocity. The
vertical thick line indicates the boundary which separates the magnetosphere and the solar

wind.
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3.3 Linear analysis

Here, the effect of in-homogeneity in plasma on the growth rate of the K-H instability is ex-
amined in this section. For a zero-thickness boundary layer the growth rate of incompressible

K-H instability can be obtained analytically (Chandrasekhar, 1961),

v = k| V1 —VQ‘\/E, (3.1)

where, k, is a wave number in the direction of the flow, U; and U, are uniform velocity of

the fluids 1, 2 whose uniform density are p; and ps, respectively, and

Al = A ;AQ = P2 .
p1+ P2 p1+ P2

Compressibility and a finite thickness of a boundary layer, which are not included in the
analytic solution, stabilize the growth. Taking account in these effects, the growth rate can
be obtained by solving the linearized MHD equations as a eigen value problem (Appendix

A) with the following initial conditions.

= (Va(y),0,0)
= (0,0,B,)
V, = ?tanh(%)
n = %((1+a)—(1—a)tanh(%))
8 = 0.3
Vo = —-1.0

a = 0.2,0.3,0.4,0.6,1.0,

where A and o« denotes the width of the shear layer and the asymptotic number density
ratio relative to the value n(4o00), respectively. Figure 3.4 shows the results for the different
density ratios, c. The growth rate and the wave number are normalized in terms of A/V;, and
A, respectively. Since the magnetic field is transverse to the plane which contains the flow
motion the only magnetosonic mode is destabilized, whose phase velocity is m , where
cs = y/I'P/p and V4 = B/\/4mp denote the sound speed and the Alfvén speed. Though the
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Figure 3.4: The growth rates of the K-H instability for different density profiles. The green
line is the growth rate for the incompressible case with the discontinuous velocity profile for

a=0.2. (eqn. (3.1))

stratification in density slightly affects on the maximum growth rates, the corresponding
wave number, and the eigen mode structure due to the change in the magnetosonic speed
or compressibility in the low-density region, the stratification cannot be a new free energy
for another instability. (Note that under the gravity force, the stratification acts for the
stabilization which is controlled by the Richardson number,

gop , (9V,\’
= 2" . .2

The necessary condition for stability is (cf. Chandrasekhar, 1961)

While in the circumstances now considering the Richardson number is supposed to be quite

small (R; << 1) and the stratification does not stabilize the K-H instability, the effect of
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the stratification is quite important in the circumstances of the hydrodynamical experiments

and in the atmospheric phenomena.)

Figure 3.5 shows the eigen mode structure of the perturbed thermal pressure with the
flow vectors of unperturbed and perturbed velocity for (A) @ = 0.2 and for (B) a = 1.0 .

While the eigen mode structure is symmetric across the boundary (y=0) for o = 1.0, a little

Y (A)

Figure 3.5: The eigen mode structure of the fastest growing mode for (A)a = 0.2 and
(B)aw = 1.0. The abscissa and the ordinate shows the x and the y coordinate normalized
by the initial shear width A . The color coded strength shows the power of the thermal
pressure of the fastest growing mode. The arrows shows the corresponding perturbed and

unperturbed velocity.

asymmetry in the eigen mode structure is confirmed in the result for a = 0.2, which is due

to the asymmetrical compressibility by the inhomogeneous magnetosonic speed.

3.4 Ideal MHD Simulation

A two-dimensional direct numerical simulation with the conventional MHD equations (Ap-
pendix A.1.1) is demonstrated in this section. We solved the equations by 4th-order Runge-
Kutta scheme in time and 3rd-order up-wind scheme in space to explore how the stratification

affects the non-linear development of the K-H instability.
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3.4.1 Simulation parameters and initial conditions

The initial equilibrium is maintained by the constant total (thermal and magnetic) pressure
with a sheared velocity profile which varies as V, = 0.5Vgtanh(y/)), where ) is a shear scale
length and Vj is a jump in velocity across the shear layer. The 2-D simulation domain has
32 grids per one A and the dimensions are L, = 15.7A, L, = 20.0A so that the system’s
size in the x approximately corresponds to the wavelength of the fastest growing mode
(FGM) (Fig. 3.4, Miura and Pritchett, 1982). The boundary condition is imposed such
that there is no mass flow (V, = 0) across the boundaries at y, = £10.0\ and all quantities
are periodic in the x direction. In the following simulation runs we adopt Alfvén Mach
number My = Vo/Va = —1.0, where V5 = By//4mpy, po = MNg, V4 is the Alfvén speed,
M, Ny and By are the ion mass, the equilibrium density and the magnetic field strength at
yb = +10]A, respectively. The homogeneous transverse magnetic field B, is set initially so
that the initial thermal pressure is constant in the system and plasma beta (8 = thermal
pressure / magnetic pressure) is set equal to 0.3. The number density profile is provided
with a functional form of N = No/2{(1+ «) + (1 — «)tanh(y/A)}, where « is the asymptotic

number density ratio.

3.4.2 Linear growth

In the linearly growing stage, each simulation runs show the development of the eigen mode
with the growth rate as expected from the linear analysis. Fig. 3.6 shows the time develop-
ment of the FGM (mode 1) integrated in the y direction for (A) @ = 1.0 and (B) a = 0.2.
While a good agreement between the simulation result and the linear analysis can be con-
firmed in the result for a = 1.0, the oscillatory behavior of the FGM does not follow simply
the linear growth as expected from the linear analysis. This is due to the onset of turbulence

which will be introduced in the following subsections.
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Figure 3.6: The time development of the FGM for (A)a = 1.0 and (B)a = 0.2. The
abscissa shows the time normalized by A/Vj and the ordinate shows the power of the Fourier
transformed thermal pressure whose mode number corresponds to the K-H instability. The

dashed lines in the panels shows the growth rate calculated in the linear analysis in section

3.3

3.4.3 Onset of secondary instabilities in the non-linear stage of the K-H insta-

bility

In the non-linear stage, however, the eigen mode develops differently in each run for different
a. In the simulation run with @ = 0.2 the secondary instabilities start growing at a time
t = 84.38)\/V; (Fig. 3.7 (B)). At about X = 8.5)\,Y = —2.0A and X = 14.0\,Y = 1.5,
newly-induced waves grow in the density interface. Furthermore, dense parts of plasma
are bent inside the normal K-H vortex. (These two kinds of growing wave are zoomed in
the white frame in Fig. 3.7 (B).) As a consequence of such developments of the secondary
instabilities the normal vortex structure collapses and the system proceeds to the turbulent
flow stage (Fig. 3.7 (C)). In the final stage of the simulation run at ¢ = 156.25)\/V; (Fig.
3.7 (D)) fine structures appear with turbulent flows and the mixing layer approaches the
boundary at y, = —10A. In this simulation run two characteristic properties are present:
One is the collapse of the normal vortex structure and the other is that the position of

the mixing layer moves toward -y direction from the center of the simulation domain. The
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Figure 3.7: Number density profiles with flow vectors for o = 0.2 are shown at a time (A) t =
71.88)\/Vj, (B) t = 84.38)\/Vp, (C) t = 89.84\/Vj, and (D) t = 156.25)\/V;. The abscissa and
the ordinate shows the x and the y coordinate in the unit of the initial shear width, A. The
onset of secondary instabilities are recognized in (B) as zoomed-in the white frames. The

mushroom like structure zoomed in (C) reminds the readers of the onset of the secondary

Rayleigh-Taylor instability.
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former leads the system to the turbulent structure and enhances the mixing in time. The
latter introduces the diffusion of fluids from the dense to the tenuous region and enhances

the mixing in space.

3.4.4 Energy spectra

The collapse of the normal vortex induces the turbulent flows and enhances the mixing rate
in time. To understand the development of the turbulent flows, the energy spectrum is
obtained by integrating in the y direction,

+Yb

N dy /OLJc dz(VZ (z,y) + V. (z,y))exp(—ikyz). (3.4)

fle) = [
As results, the energy spectra (Figs. 3.8 (A) - (C), with time proceeding from the blue to the
red line) with the final density profile of each run (Figs. 3.8 (D) - (F), corresponding to thick
dark red lines in the spectra) show that their developments depend on o. When o = 0.2,
while the power of the normal K-H mode remains constant, the energy cascades rapidly to
the shorter wave modes as time goes on (Fig. 3.8 (A)). (Note that the strong dissipation in
a high wave number region is due to the up-wind scheme.) When a = 0.6, the energy also
cascades to the shorter wave modes, although their peak values are rather small (Fig. 3.8
(B)). When « = 1.0, the energy does not cascade to the shorter wave modes and the normal
mode dominates the system (Fig. 3.8 (C)). We fitted the spectra at t = 156.25\/V; (thick

dark red line) with power functions and evaluated the powers for a = 0.2,0.6,1.0 as -1.32,

-1.38, -2.49, respectively.

3.4.5 Baroclinicity inside the K-H vortex

Subsequent small scale vortices born after the onset can be explained by the baroclinic term
in the equation of enstrophy in a 2-D transverse magnetic field configuration (Miura, 1997),

Vp x VP,

o (39)

%//dxdy(VxV)Q - —//dxdy(V><V)2(V-V)+//dxdy2(V><V)-

where P, represents the total pressure which is a sum of thermal and magnetic pressure.

The baroclinic term (the second term on the right-hand side of eq. (3.5)) is usually equal to
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a=0.2 a=0.6 a=1.0

2 A

Figure 3.8: The energy spectra are shown in (A) for a = 0.2, (B) for a = 0.6, and (C) for
a = 1.0. Time evolution is expressed by the change in color of the line from blue to dark
red. (D)-(F) shows the number density profiles with flow vectors which correspond to the
energy spectra of the thick dark red lines (t=156.25\/V}) in (A)-(C), respectively. Spectra at
t =156.25)\/V; (thick dark red lines) are fitted with power functions (dash lines in (A)-(C))

and the powers are evaluated as -1.32, -1.38, -2.49, respectively.

63



Q

Q

L

([ T
—ooo9
oo Wi

©
o
(o))
TT T T T T T T [T T T T [TTTT
!
i
i
i
Q

baroclinic term (NN,)

0 <0 40 60 80 100 120 140
time (\/V,)

e o
oo

©
o~

o T H\H\\‘HHHH\‘\HHHH“HHHH‘HHHHWHHHH

enstrophy (NN,)

/
i I
\\H\H\\‘fHH\H\‘HH\H\\‘H\HHH‘H\HHH‘\HHHH

o o ©
o~ W

20 40 60 80 100 120 140

time (\/V,)
Figure 3.9: Time evolution of (A) baroclinic term and (B) enstrophy in eq. (3.5) are shown
for different . The time and the both two terms are normalized by \/V; and the grid number
of the simulation domain (N, x Ny). Solid, dash-dotted, dash, dotted, and dash-3-dotted

lines correspond to the result for a = 0.2,0.3, 0.4, 0.6, 1.0, respectively.

zero (barotropic) as seen in the simulation run with a = 1.0 (Fig. 3.9(A)). In such a case
the total amount of the enstrophy is slightly reduced by compressibility and the viscosity
(eq. (3.5) and Fig. 3.9(B)). In the simulation run with & = 0.2 the baroclinic term is also
equal to zero initially. As the K-H mode develops, however, the baroclinic term is no longer
equal to zero locally because of the rolling up motion and starts increasing in the non-linear
stage until ¢ = 90A/V, (Fig. 3.9(A)). Figure 3.10 shows the profile of (A)number density,
(B)baroclinicity, and (C)vorticity taken at ¢t = 93.75(\/V;). As indicated from eq. (3.5),
the vorticity appears associated with the baroclinicity in (B). These behaviors can be seen
in other runs, although the intensities are smaller with larger « (smaller heterogeneity). As
a result from the equation (3.5), the enstrophy integrated in the simulation domain also

increases with time until ¢ = 100A\/V, (Fig. 3.9(B)). These indicate that the violation of the
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Figure 3.10: The snapshots of (A) Number density, (B) baroclinicity, and (C) vorticity taken
at t = 93.75(\/Vp) are shown.

barotropy, or, the new born of baroclinicity inside the normal K-H vortex produces vortices

one after another subsequently.

3.4.6 Secondary Kelvin-Helmholtz and Rayleigh-Taylor instability

What violates the barotropy? Examining in detail, it is found that the onsets of the turbu-
lence are triggered by two kinds of secondary-induced instabilities due to the stratification in
density (Fig. 3.7 (B)). The one is the K-H instability and the other is, more importantly, the
Rayleigh-Taylor (R-T) instability (Chandrasekhar, 1961; Sharp, 1984). (Note also the white
small frame in Fig. 3.7 (C) which emphasizes the mushroom like structure that characterizes

the non-linear development of the R-T instability.)

The secondary K-H instabilities are excited by the strong shear flows inside the normal
vortex. In the linear stage of the normal K-H instability, the unstable eigen mode of the
perturbed total pressure accelerates the fluid elements, which makes the tenuous fluid turn
faster and the dense fluid turn slower. Note also that one can confirm the sharp stripe
pattern of the density interface, across which the flow velocity is sheared, inside the vortex

(Fig. 3.7 (A)). This is a result of rarefaction and compression by the fast magnetosonic wave
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whose phase velocity is faster in tenuous region and slower in dense region. The quite sharp
interface of density (velocity), whose width is maintained by a numerical dissipation, leads
the growth rate of the secondary K-H instability to be approximated as in the equation (3.1).

The velocity difference is determined from the force balance equation,
V2. V3.
o —7 = py—2F =—V,P, (3.6)
T1 T2
where 7 denotes a unit vector in radial direction originating at the center of the normal
vortex, V, denotes the differential operator with respect to the radial direction, and the

subscripts 1 and 2 denote the dense and tenuous parts of the fluid, respectively. Comparing

one part with the other by assuming r; = ry, the velocity difference becomes

Vi P2

— == =0, 3.7

v, ” Va (3.7)
AV =V, = Vi =Vo(1 = Va). (3.8)

Along with the equation (3.1),

Y= kz|V1 - V2|\/A1A2,

1 o

A:— frd
YT rae "t 1+

the growth rate of the secondary K-H instability therefore has a functional form of

v VY (3.9)

1+«

which is affected by the stratification in density.

The other secondary instability is also attributed to the vortex motion. The centrifugal
force can act as a radial effective gravity force ges on the fluid medium. Under the gravity
force the well-known Rayleigh-Taylor instability grows when Vp - g < 0 (Chandrasekhar,
1961). Consequently, the density interface where Vp - geg < 0 inside the vortex is unstable
to the R-T instability due to the radial centrifugal force. The growth rate is analytically

given for a thin boundary layer as

%i%%ﬁk (3.10)
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and it shows that the growth rate of the R-T instability is

(3.11)

which is also a function of the stratification, a. Assuming the normalized effective gravity

et 1S
‘ gr | _ V2 (/20
QgiVA T 025/\FGM
%2
T dma
= 0.08, (3.12)

the linear analysis gives the growth rate of the secondary R-T instability. The other param-
eters used in the analysis are a = 0.2, plasma 8 = 0.3 and the width of the boundary layer
which is similar to the initial shear layer width A. This condition can estimate the minimum
value of the growth rate. Figure 3.11 shows the result of the linear analysis of the secondary
R-T instability (asterisk) along with the growth rate of the normal K-H instability (open
square). The solid line shows the analytical result obtained by the equation (3.10). As a
result, the growth rate of the secondary R-T instability is more than twice larger than that
of the normal K-H instability. Actually, the growth rate of the secondary R-T instability
has a value between the minimum (asterisk) and the analytical result (solid line), the result
of the linear analysis justifies the R-T instability as a secondary instability observed in the
simulation for o = 0.2. Figure 3.12 shows the simulation results of the time profiles of the
modes k;A = 0.39 ~ 2.36. The red and black solid lines shows the result for a = 0.2,1.0,
respectively. As is evident from Figure 3.12, the shorter wave modes grow faster than the

normal K-H mode and saturate larger in amplitudes in a = 0.2 than in o = 1.0.

Both secondary instabilities show that the growth rates depend on the inhomogeneity
in density. Furthermore, the growth rates are positive functions of the wave number. This
means that the free energy of the inhomogeneity in density is transported to shorter wave

modes and as a result, turbulence takes place.
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Figure 3.11: Comparison of the growth rate between the normal K-H and the secondary R-T
instability. The asterisk shows the result for the secondary R-T instability obtained by the
linear analysis. The open square shows the growth rate of the normal K-H instability. The

solid line shows the analytical result of eq. (3.10).

3.4.7 Width and position of the mixing layer

Turbulence enhances the mixing of the two media. To estimate the mixing area we fitted
the average profile of V, with a functional form of 0.5Vytanh((y — yo)/p) with two free
parameters of the width p and the position yy. The width of the mixing layer increases
with time through two phases in the run with o = 0.2,0.3 (Fig. 3.13(A)). The first phase,
which can be seen in all simulation runs until ¢ = 60\/V;, corresponds to a linear growth
of the normal K-H instability. (Slight differences in time evolution attribute to the slight
differences in growth rates. See Fig. 3.4) The second phase is clearly seen in the run with
a = 0.2 and o = 0.3 after the first phase and the beginning of the second phase at ¢t = 80\/V,
in o = 0.2 corresponds to the onset of the secondary instabilities (Fig. 3.7(B)). The width

of the mixing layer increases from the first saturation level while in other simulation runs
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Figure 3.12: Time profiles of the modes kA = 0.39 ~ 2.36 are shown for the results of

a = 0.2 (red) and a = 1.0 (black).

it oscillates within a certain level. This time profile indicates that turbulence enhances the
mixing in space. A second point to be noted is the time development of the position of the
mixing layer (Fig. 3.13(B)). In all simulation runs except for @ = 1.0 the position of the
mixing layer shifts toward the -y direction until ¢ = 60\/Vj and the displacement is larger for
smaller cv. This corresponds to the linear growth of the normal K-H instability whose turning
over motion weakly induces the R-T instability at the outer edge of the vortex. The stability
condition geg - Vn > 0 introduces the asymmetry in the y direction, that is, it is unstable
to the R-T instability in the negative y region of the outer edge of the vortex whereas the
opposite side is stable. Hence the mixing layer seems to shift toward the -y direction. After
that the displacement again starts increasing in the run with a = 0.2 and weakly in &« = 0.3
at ¢ = 100\/Vp while stays almost constant in other runs. This additional displacement
starts after the onset of turbulence. Examining in detail, we find that the displacement is

accompanied by the R-T instability at the outer edge of the normal K-H vortex where the
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Figure 3.13: Macroscopic properties are shown for different o. The profile of V, averaged
over the x direction is fitted with a functional form of 0.5Vytanh((y — vo)/p) with two free
parameters of width p and position yy. Shown are the time evolution of (A) the width u and
(B) the position y, in the unit of the initial shear width A. The second phases at t=80\/V}
in (A) and (B) for @ = 0.2,0.3 correspond to the onset of turbulence and indicate that the
turbulence effectively enhances the mixing of two media and the transport of dense fluid to

the tenuous region.

dense parts of fluid are sandwiched between tenuous fluids (red part between blue colored
fluids in Fig. 3.7(B)). At first, the secondary K-H instabilities grow at the two interfaces
since there are velocity differences across the interfaces. Accordingly, the flow is bent and
the resulting wavy structure induces the R-T instability. Mass exchange is a basic element
of the R-T instability and this characteristic introduces the transport of the dense fluid to
the tenuous region at the edge of the normal vortex. (There is no mass transport at the

opposite side of the normal vortex since g - Vn > 0.)
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3.4.8 Effect of numerical resolution on the secondary instability

The thinning of the density interface during the non-linear development of the normal K-
H instability is a key mechanism for the onset of the secondary instabilities. In MHD
regime, only the numerical dissipation of the up-wind scheme used in the simulation preserves
the steepening of the density interface. To explore the effect of the numerical resolution
on the development of the K-H instability three kinds of MHD simulations with various
numerical resolutions are examined. Figure 3.14 shows the similar result of the Figure

3.13 but for a = 0.2 with the various numerical resolutions. While in the linearly growing

8 \ I 2 I I

A B
512x641 — 512x641
,,,,,, 256x321 - - - - - - 256x321
N 128x161 s 128x161

width of the mixing layer (A)
the average position of the mixing layer (\)

0 | | | -3 | | |

0 39 8 117 156 0 39 8 117 156
time (A/V,) time (A/V,)

Figure 3.14: Macroscopic properties for a = 0.2 are shown for three numerical resolutions in

the same format of Fig. 3.13.

stage three simulation results show the same profile, the difference between the result for
the resolution 128 x 161 and the others (256 x 321 and 512 x 641) appears from the time
t = 80\/V, at which the secondary instabilities start growing. In the case of the resolution

128 x 161 the numerical dissipation strongly inhibits the onset of turbulence and as a result,
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it macroscopically changes. Although the difference between the result of the resolution
256 x 321 and 512 x 641 exists microscopically, the numerical dissipation is small and it does

not alters the macroscopic structure.

3.4.9 Effect of inhomogeneity in magnetic field

The mechanism of the onset of the turbulence and the resultant mass transport to the ten-
uous region shown in this section is fundamentally hydrodynamic since one can obtain the
same result if the magnetosonic wave is converted to the sonic wave. In space and astrophys-
ical phenomena, however, there is also a magnetic field interface where there is a velocity
shear interface. To elucidate the effect of inhomogeneity in magnetic field (thermal pressure)
on the non-linear development we have also carried out the simulation of an in-homogeneous
transverse magnetic field case maintained by in-homogeneous temperature fluids with a ho-
mogeneous density profile. Initial condition is similar to that of the case in the previous
subsections except that the transverse magnetic field is non-uniform in the y direction with

the functional form of

B, — % ((1 +br) + (1 — br) tanh (%)) , (3.13)

where br denotes the asymptotic ratio of the magnetic field strength relative to the value at
y = +00. Thermal pressure is given so that the pressure balance

2

B
P+ %= tant 3.14
+ - constan ( )

is satisfied. As a result for br = 0.2 shown in Figure 3.15, we could not obtain any turbulent
mixing processes in this parameter regime. The effect of inhomogeneity in magnetic field,
however, can be important in a kinetic regime. Recently, Nakamura and Fujimoto reported
the importance of the electron inertia on the K-H instability by the two fluid MHD simu-
lation. They pointed out that the current driven instability, current sheet kink instability
(Suzuki et al., 2002) triggers the onset of secondary instability and the collapse of the K-H
vortex. This mechansim results the enhanced mixing of plasmas. Furthermore, the lower-

hybrid drift instability is also expected at the boundary and exploring the coupling of these
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micro instabilities with the macroscopic K-H instability is a exciting task. The non-linear
development of the K-H instability in arbitrary magnetic field geometries in a kinetic regime

is still remained as a future work.

3.5 Full particle simulation

In a MHD regime only the numerical dissipation determines the smallest scale. The steepen-
ing of the density interface is maintained by the numerical dissipation, the strong dissipation
in the energy spectrum (Fig. 3.8) is also a numerical one, and the mixing shown in the
Figure 3.7 is caused by the numerical dissipation. In magnetospheric plasma on which the
present dissertation is focusing the mean-free path of the particle is about one AU which is
much larger than the scales of the magnetospheric phenomena. Hence, the collision which
is a source of energy dissipation cannot be expected and alternatively, the anomalous diffu-
sion by the enhanced electrostatic and/or electromagnetic waves induced by the secondary
instabilities is expected in this circumstance. To elucidate what acts as the dissipation that
determines the finest scale, the study with the full particle simulation is demonstrated in

this section.

3.5.1 Initial condition

Initial conditions of the fluid parameters are similar to that in the ideal MHD simulation as

shown in Figure 2.3. The other parameters which are unique in the kinetic treatment are

i 1

— 16, (3.15)
Ve _ .35, (3.16)
wpe

A 40, (3.17)

rgi

B g0 (3.18)

A 7

where M and m, Wge, Wpe, I'gi, and A denote ion and electron mass, the electron gyro frequency,

the electron plasma frequency, the ion thermal gyro radius and the grid size. Each parameters
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Figure 3.15: Magnetic field profiles with flow vectors for br = 0.2 are shown at a time (A)
t = 68.75\/V;, (B) t = 87.5M/V4, (C) t = 106.25A/Vp, and (D) t = 125.00A/Vj in the same

format of the Fig. 3.7. No development of the turbulence is confirmed in the absence of the
stratification.
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of Wge, Wpe, and g are the values calculated in the region y, = +10A. Parameters adopt in

the above equations indicate that

e the small mass ratio as compared to the real mass ratio of 1836 is due to the limited

computational resources (eqn. (3.15)),

e weak magnetic field condition is expressed by the eq. (3.16) which is on the order of

1072 in the earth magnetosphere,

e and equation (3.17) guarantees the scales of the system to be hydrodynamic.
On loading particles of ion and electron;

e Particles of both ion and electron are loaded according to the maxwell distribution
function, whose first moment reveals the velocity profile, V,(y) = Vo/2 tanh(y/)) and

the second moment satisfies the pressure balance.

e Particles are distributed in the simulation domain so that the density profile becomes
as N = Ny¢/2{(1+a)+ (1 —a)tanh(y/\)} by using the cumulative distribution function
of the density profile (Birdsall and Langdon, 1991)

e Small charge is added inside the shear layer so as to satisfy the Gauss’ law since the y

component of the electric field Ey(y) = —Vx(y)B, is not uniform in the y direction.

The number density along with the plasma parameters are summarized for each simulations
in table 3.1, in which Ngw and Nysp denote the number density at the boundary y, = +10A
and y, = —10) modeling the solar wind and the magnetosphere. As in the ideal MHD case
the parameter « is used to explore how the stratification affects the non-linear development

of the K-H instability in a kinetic regime.

3.5.2 Linear growth

In the linearly growing stage, the K-H mode does not behave simply as expected from

the linear theory because of the kinetic effects of the ions. Figure 3.16 shows the time
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Table 3.1: Plasma parameters used in the simulations in this chapter.
)\/ng' %/VA « NSW NMSP /Bion /Belectron M/II] wge/wpe
4.0 -1.0 0.1 160 16 0.15 0.15 16 0.35

4.0 -1.0 0.2 80 16 0.15 0.15 16 0.35

4.0 -1.0 1.0 128 128 0.15  0.15 16 0.35

development of the y component of the perturbed velocity whose mode number corresponds
to the FGM for (A) @ = 1.0 and (B) o = 0.2 (solid lines) along with the results obtained

in the linear analysis (dashed lines). While the simulation result for & = 1.0 shows a good

mode= 1 mode= 1
= 1LE :
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Figure 3.16: The time development of the FGM for (A)a = 1.0 and (B)a = 0.2 in the same
format of the Fig. 3.6 except that the ordinate shows the power of the y component of the
Fourier transformed perturbed ion velocity. The dashed lines in the panels shows the growth

rate calculated in the linear analysis in section 3.3

agreement with the linear analysis (Fig. 3.16(A)), a little difference between the result for
a = 0.2 and the analytic one can be seen in Fig. 3.16(B). Although the stabilization of the
K-H instability by the finite gyro radius effect (Pritchett and Coroniti, 1984; Huba, 1996b)
of hot ions in the tenuous region can be operative, less numbers of hot ions do not stabilize

the K-H mode substantially.
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3.5.3 Onset of the secondary R-T instability

In the non-linear stage of the K-H instability, the difference from the ideal MHD appears.
Figure 3.17 shows the snapshots of the simulation result for o = 0.2. Color intensity reveals
the ion number density and the contour lines are of the electrostatic potential which approx-
imately correspond to stream lines of the fluid. At a time ¢t = 62.15)\/V} during the first
turning over motion of the K-H instability the secondary instability grows at the outer edge
of the vortex. The fact that the secondary instability grows at only the density interface
where the effective gravity acceleration, ges, by the centrifugal force satisfies the condition
ger - Vp < 0 justifies the secondary instability as a Rayleigh-Taylor instability which is also
observed in the previous MHD simulation. It is also to be noted that the particles initially
located in the region y > 0 reach the opposite boundary. Since the density stratification
triggers the onset of the R-T instability (eq. (3.10)), the particles are transported radially

toward the tenuous region.

The effective transport by the secondary R-T instability can also be confirmed by the
orbits of an ion and an electron for & = 0.2 which are shown in Figure 3.18 and 3.19.
Both the ion and the electron initially follow the motion of the K-H instability which is
characterized by the circuit of the orbit (Fig. 3.18(A) and Fig. 3.19(A)). In the later part
of the simulation both two particles suddenly changes their direction on the way in the
circuit and move toward the radial direction centered on the middle of the vortex. The time,
t ~ 80A/Vy, when the particles abruptly change the direction is corresponds to the onset of

the secondary R-T instability.

3.5.4 Mixing rate

As a result of the onset of the turbulence, mixing of the plasmas which initially located in
the region y > 0 and y < 0 is enhanced. Figure 3.20 shows the time profiles of the mixing
rate for a = 1.0,0.2,0.1. The mixing rate for & = 1.0 shows the same result in Chapter 2
indicating that the well mixed region is located along the boundary, which is stretched and

deformed by the evolution of the K-H instability and the mixing scales of time and space are
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Figure 3.17: Number density profiles with contour lines of the electrostatic potential for
a = 0.2 are shown at a time (A) t = 49.72\/V}, (B) t = 62.15\/V;, (C) t = 111.88)\/V}, and
(D) t = 194.75)\/V} in the same format of the Fig. 3.7
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Figure 3.18: (A)The orbit in the simulation domain, (B) the time development of the y
coordinate and (C)the x coordinate, and (D)the orbit in a phase space are shown. The
coordinate x and y are normalized by the initial shear width A, the time is normalized by

the parameter \/V;, and the velocity is in the unit of the speed of light.

determined by the K-H instability. In the case of @« = 0.2 and a = 0.1, however, much faster
and broader mixing profiles are obtained in Figure 3.20. In the result of both the ion and
the electron, sudden increases in the mixing rate are observed from ¢ = 50A/V; and their

slopes are much steeper than that in the homogeneous case (o = 1.0).

At a time t = 50)\/V, corresponds to the onset of small scale modes whose time devel-
opments are shown in Figure 3.21. The y component of the Fourier transformed perturbed
ion velocity is integrated in the y direction to obtain the power of the wave propagating in
the x direction. As can be seen from Figure 3.21, waves of small mode numbers from 4 to

6 start growing at about t = 30\/V, which almost coincide with the strong increases in the
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Figure 3.19: Same profiles as shown in Fig. 3.18 but for the electron.

mixing rate. Hence the new born of the small scale waves are expected to be an efficient

mixing mechanism.

In a collision-less plasma transverse magnetic field confines the plasma and mixing area of
two plasmas should be within a scale of particle’s gyro radius. The mixing rates of ion’s and
electron’s integrated in the simulation domain, however, reveal almost the same profile as
shown in Figure 3.20. Figure 3.22 shows the mixing rate of ion and electron snapshotted at
t = 66.3\/Vy, which is just after the onset of the secondary R-T instability. Macroscopically,
well mixed regions are concentrated in the contact interface of the density and the spread
of the mixing area is on the scales of the particle’s gyro radius. Microscopically, however,
the electron density interface are strongly deformed with fine scale structures as if they fill

in the cloud of the ions’ mixing area.

Deformation of the electron density interface is caused by the strong electric field excited
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Figure 3.20: The time profiles of the mixing rates for (A) the ion and (B) the electron in the
same format of Fig. 2.9. In each panels cross(+), asterisk(*), and open diamond mark the

result for a = 1.0,0.2,0.1, respectively.

by the secondary R-T instability. In a two fluid MHD regime the R-T instability becomes
a electrostatic mode which excites electric field along the density interface, that causes an
exchange of mass by E x B drift. (The two fluid approximation on the linear growth of the
R-T instability is summarized in Appendix B, in which the linear analysis shows that the
difference in the growth rate between the ideal and the two fluid MHD regime is negligible in
this situation.) Figure 3.23 shows the absolute value of the electric field normalized by the
convection electric field V5By/2¢ and the electrostatic potential obtained at t = 66.3\/ V.
The strong electric field which is about 4 times larger than ByVy/2c is excited along the
density interface and the accompanying deformation in the electrostatic potential indicates
that the electric field is electrostatic, which is caused by a difference in the response to the
centrifugal force between ions and electrons. This electric field deforms the electron density

boundary into fine structures so that the mixing rate follow the ion’s.
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Figure 3.21: The time developments of the power of the waves whose mode number ranges
from one(K-H mode, top left) to six(bottom right) are shown. The y component of the per-
turbed ion velocity is taken to be Fourier transformed in the x direction and then integrated

in the y direction.

3.5.5 Width of density interface

In ideal MHD simulation the width of the density interface which is a key for the onset of the
secondary instability is preserved by the numerical dissipation as shown in Figure 3.14. In a
kinetic regime, however, the spatial scale of the density interface is on the order of ion’s gyro
radius. Figure 3.24 shows the ion density profiles as a function of the y coordinate in the unit
of an ion thermal gyro radius. The left column shows the initial density profiles. From the
top to the bottom, the initial widths of the density are A/rg = 1.0, 2.0, 4.0, respectively. The
right column shows the snapshot of the density profiles just before the onset of the secondary
R-T instability for each initial density widths at t = 59.67,57.45,49.72\/V,, respectively.

The steepening of the ion density are observed at the outer edge of the K-H vortex in each
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Figure 3.22: The mixing rate of (A) the ion and (B) the electron is snapshotted at
t = 66.3)\/Vy is shown in the same format of Figure 3.17.

simulations and the final width is same even though the initial width is different. The
snapshot of the density profile whose initial width A/rg is 4.0 (bottom right in Fig. 3.24)
is zoomed in the Figure 3.24. The width of the density interface between the thick arrow

shown in Fig. 3.25 is estimated as

—_

Ly = —. (3.19)

2|
g2

As a result, the width of the density interface is estimated as about the ion’s gyro radius.
Hence, regardless of the initial width of the density interface the density interface becomes

as thin as the ion gyro radius by the time of the onset of the secondary R-T instability.
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Figure 3.23: The snapshots of (A) the absolute value of the electric field and (B) the elec-

trostatic potential at t = 66.3A/V, are shown in the same format of Figure 3.17.

3.5.6 Energy spectrum

In MHD simulation the onset of the turbulence makes the kinetic energy spectrum cascades
to the shorter wave modes and the dissipation region of the spectrum is determined by the
numerical dissipation. To explore what determines the scale of the dissipation region in a
collision-less plasma Figure 3.26 and 3.27 show the time development of the power spectrum
of the x component of the electric field obtained in the simulation for « = 1.0 and o = 0.2,
respectively. In the simulation of the homogeneous case («« = 1.0), the longest wave mode of
the K-H mode dominates (Fig. 3.26). In the simulation of the in-homogeneous density case
(o = 0.2), however, the energy is transported to the shorter waves from about t = 20/ V.

At the time t = 60A/V, the elongated power spectrum reached the scale of the ion gyro
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Figure 3.24: The initial (left column) and the snapshot (right column) of the ion density
profiles are shown for different initial shear widths A/rg. The abscissa shows the y coordinate
in the unit of ion gyro radius r,; and the ordinate shows the ion number density. From the
top to the bottom the results for A/rgi = 1.0,2.0,4.0 are shown which are obtained at the
time t = 59.67,57.45,49.72\/V,, respectively.
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Figure 3.25: The snapshot of the density profile which is similar to the bottom right panel
of Fig. 3.24 is shown in the same format of Fig. 3.24. The width of the density interface

between the two horizontal arrows is estimated.

radius over which the elongation of the spectrum is inhibited. After the time t = 60A\/V,
from the longest K-H mode to the shortest ion scale mode all waves of the scales coexist in
the later part of the simulation. At the time when the energy transport to the shorter wave
modes starts corresponds to the onset of the secondary R-T instability and justifies the R-T

instability as a seed for the turbulence.

The power spectrum is averaged in the interval t = 50 ~ 199\ /V, and is shown in Figure
3.28. The solid line shows the result for &« = 1.0 and the solid red line shows the result
for @« = 0.2. An energy cascade to shorter waves is evident in the result for o = 0.2 while
the longest K-H mode dominates in the result for & = 1.0. The elongation of the spectrum
reaches the scale of ion thermal gyro radius beyond which the power of the wave is slightly

damped as compared to the result for a = 1.0.
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Figure 3.26: The time profile of the kinetic spectrum obtained by eq. (3.4) in the simulation

for &« = 1.0 is shown. The abscissa shows the wave number in the x direction and the ordinate

shows the time.The strength in color indicate the power of the wave.
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Figure 3.27: The time profile of the kinetic spectrum in the simulation for o = 1.0 is shown

in the same format of Fig. 3.26.

87



QR
Il
O =
oo O

10

lon thermal gyro radius

Jam

0.1 1.0

k

X

Figure 3.28: Power spectrum of the x component of the electric field averaged in the interval
t = 50 ~ 199A/Vy. The solid line shows the result for & = 1.0 and the solid red line shows

the result for « = 0.2.

3.6 Summary and Discussion

Two-dimensional MHD and full particle simulation of the Kelvin-Helmholtz instability have

shown that the inhomogeneity in fluid induces turbulence and enhances mixing of two media.

In the ideal MHD simulations the triggers of the onset are the secondary K-H and the
Rayleigh-Taylor instabilities which grow inside the normal K-H vortex. Furthermore, the
R-T instability also plays an important role in the mass transport to the tenuous region
while the secondary K-H instability is just a seed for the turbulence. Although these two
secondary instabilities themselves are classical, the excitation of secondary instabilities, in
particular, the R-T instability by a normal K-H instability in a two-dimensional plane is
a new concept. Once the onset is triggered turbulence is generated since the subsequent
higher order instabilities are induced by the pre-excited K-H and R-T (Youngs, 1984; Jun
et al., 1995) instabilities. This chain-reaction continues until the dissipation overcomes the

instabilities (Fig. 3.29). The mechanism is therefore a strong non-linear coupling and the
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Figure 3.29: Schematic view of the self-similar system obtained by the ideal MHD simulation.

system has a self-similarity which can be related to the power law spectrum of the kinetic

energy.

In a full particle simulation the similar onset of the secondary instability induces the
turbulence and as a result the particles initially located in the dense region are transported
across the boundary and reach at the opposite boundary, except that the only R-T instability
owes as a seed for the turbulence since the secondary R-T instability grows in the first turning
over motion at the outer edge of the vortex. The difference from the result in ideal MHD’s
is that there always exists thermal fluctuations of hot plasma at the density interface in the
full particle simulation. The finest scales which is determined by a numerical dissipation in
a ideal MHD is characterized by ion dynamics. The steepening of the density interface at
the outer edge of the vortex is inhibited by the ion gyro motion, and the energy cascade by
the turbulence is elongated to the scale of ion gyro radius beyond which the power of the

waves are slightly damped.

The present study implies a significant suggestion that can be applied to a variety of
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fields as well as to the interaction between the solar wind and the earth magnetosphere
since the density interface with a velocity shear can be seen anywhere and the mechanism is

fundamentally hydrodynamic.
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CHAPTER 4

Dawn-dusk asymmetry

4.1 Introduction

The dawn-dusk asymmetry in the property of the ion components in the low latitude bound-
ary layer (LLBL) was reported by Fujimoto et al.[1998]. In the dusk side of the LLBL,
two components of the magnetospheric and magnetosheath origin are observed with clearly
separated two peaks in energy as shown in Figure 3.2. On the other hand, the less clear
distinction in energy are observed in the dawn side. They explained that this asymmetry is
originated from the cross tail magnetic drift of the plasma sheet ions, bringing more energetic

ions to the dusk side (Sarafopoulos et al., 2001).

This kind of asymmetry has also been recognized as a problem of the initial loading of
the particles in a non-uniform electric field for a particle simulation (Cai et al., 1990; Cai et
al., 1993a; Pritchett, 1993). Cai et al.[1990] showed that the kinetic equilibrium is different
in a positive (dusk) and a negative (dawn) shear layer, both of which are modified from
that in MHD if the velocity shear is strong enough (Qigi% >> 1). They explained that this
difference comes from the difference in the potential (non-uniform electric field) structure as
indicated in Figure 4.1. Tons in a positive shear around the origin are in stable equilibrium
(left in Fig. 4.1) while ions in a negative shear are in unstable equilibrium (right in Fig. 4.1)
whose orbits diverge away from the shear layer. Hence, the ions in a negative velocity shear

layer have effectively larger gyro radii, which can be a stabilizing effect on the linear growth

of the K-H instability.

It has been also reported that the non-linear development of the K-H instability reveals a

dawn-dusk asymmetry. Wilber and Winglee[1995] demonstrated the full particle simulation
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Figure 4.1: Schematic view of the ion motions in the positive (left) and negative (right) shear

layer. Adopted and modified from Fig. 7 in Cai et al.[1990].

of the K-H instability modeling the dawn and the dusk LLBL. They pointed out a dawn-
dusk asymmetry in the non-linear development of the K-H instability which showed the
vortex formation in the dusk side and the tongues of magnetosheath plasma penetrating into
the magnetosphere in the dawn side. This asymmetry increases with decreasing the initial
velocity shear width. Huba[1996b] showed that the linear and the non-linear development
of the K-H instability are dependent on the sign of B . €2, where 2 =V X V denotes the
vorticity. The finite Larmor radius (FLR) effect of the ion increases or decreases the linear
growth rate when B - € > 0 (dusk side) or B - Q < 0 (dawn side). Furthermore, the non-
linear development of the K-H instability is also different and they suggested that the K-H
turbulence may be asymmetric with respect to the dawn and dusk flanks of the solar wind

interaction with a planetary or cometary plasma if the boundary layer is sufficiently thin.

While the dawn-dusk asymmetry in the initial equilibrium and the linear growth of
the K-H instability have been studied and understood, the physical process which causes
the asymmetry in the non-linear stage has been unclear. In this chapter the full particle
simulation of the K-H instability for a negative velocity shear layer explains what causes the
asymmetry in the non-linear development of the K-H instability and shows that it does not
strongly depend on the width of the initial shear layer and is a unique feature of collision-less

plasmas that cannot be found in the MHD regime.
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4.2 Initial condition

Simulation parameters used in the following results are similar to that in Section 3.5 except

that the velocity profile is given as

Vv
Vi(y) = %tanh(%), (4.1)
My = \\;—zzﬂ.o, (4.2)

so that the structure of the potential is bell-shaped one as shown in the right of Figure
4.1. (Convective electric field, E,(y) = V«(y)B,, diverges.) Plasma paramters used in the

simulations shown in the following section are summarized in Table 4.1.

Table 4.1: Plasma parameters used in the simulations in this chapter.

Mrg Vo/Va a Nsw Nusp Bion  Belectron M/M Wge/wpe section

40 +1.0 02 80 16 0.15  0.15 16 0.35 4.3

4.0 -1.0 0.2 80 16 015 0.15 16 0.35 3.5, 4.3 (for comparison)

4.3 Non-linear development for \/r, = 4.0 and o = 0.2

In this section, the full particle simulation with the thick initial velocity shear layer (\/rg =
4.0) is conducted and shows an asymmetry in the non-linear stage of the K-H instability

between the negative and the positive shear cases.

In the linearly growing stage, the K-H mode develops as seen in the positive shear case
(Fig. 3.16(B)) since the potential structure does not strongly affect on the ion orbits and
thus the linear growth rate of the K-H instability if the width of the velocity shear layer is
sufficiently thick. In the non-linear stage, however, clear differences are obtained. Figure 4.2
shows the snapshots of the density profiles in the same format of Figure 3.17 in the right col-
umn. Comparing with the result of the positive shear case in the left column, the significant

onset of the secondary instability cannot be found and the mixing region is restricted within
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the K-H vortex size. As have been discussed, the transition from the laminar to the turbulent
flows is strongly dependent on the existence of the secondary instabilities, particularly, of the
secondary R-T instability. In the present simulation, however, the significant development
of the secondary instabilities cannot be found in the first turn over motion of the K-H vortex
as was seen in the positive shear case (Fig. 3.17(B)). This can be also confirmed in the time
developments of the mode amplitudes. Figure 4.3 shows the time development of the wave
amplitudes of the modes (1 (K-H) to 6) for the positive (black solid line) and the negative
(red solid line) shear cases. The K-H mode (mode 1, top left) stands longer in the negative
shear case than in the positive shear case. The smaller modes (4-6) in the negative shear
case start growing later and saturate in the smaller amplitudes than in the positive shear
case. As a result, the mixing rates of both the ion and the electron increase slower than in
the positive shear case as shown in Figure 4.4. These results suggest that some stabilizing
effects might be operating at the outer edge of the vortex and inhibit the onset of strong

turbulence.

Figure 4.5(A) shows the profile of the x component of ion velocity at t = 72.93\/V,. At
the outer edge of the vortex sharp velocity shear boundaries are newly formed in both the
positive and negative y region. The origin of the velocity difference is explained in section 3.4,
that is, the heavier fluid turns slowly and the lighter fluid turns fast since the fluid elements
feel the same force of the perturbed pressure gradient of the K-H mode. The convective
electric field also exhibits a sharp transition at the edge of the vortex. Figure 4.5(B) and (C)
shows the profile of the y component of the electric field and the plot of the cross-section in
the y direction averaged in the region from x = 1.56\ to 3.13) (solid black box). As indicated
by two pairs of arrows, the velocity shear boundary in the negative y region corresponds to
a negative shear and the other corresponds to a positive one. We therefore think that the

thin and negatively sheared boundary has a stabilizing effect on the secondary instability.
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Figure 4.2: Number density profiles are shown in the right column. The left column shows

the result obtained in the positive shear case for the comparison. Snapshots are taken from
the top to the bottom at t=66.30, 99.45, and 165.75\/ V.
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Figure 4.3: The time developments of the wave amplitudes whose mode number ranges from
one(K-H mode, top left) to six(bottom right) are shown in the same format of Fig.3.21.
The black and red solid lines show the result for the positive and the negative shear case,

respectively.

4.4 Ton orbits in a strong velocity shear layer

The finite Larmor radius (FLR) effect of ions modifies the orbits inside a thin velocity shear
(non-uniform electric field) layer. In a positively sheared layer (B-€2 > 0, where = V x V)
ion orbits converge inside the shear layer while in a negatively sheared layer(B - Q < 0) they
diverge away from the center of the shear layer (Cai et al.[1990]). This difference in the
orbit of the ion comes from the difference in the potential structure which is shown in the

following derivation.

Let the magnetic field direct to the z direction and be uniform in the x-y plane. Thus,
particles move in a two-dimensional x-y plane, with velocity v, and v,. The electric field has

only the y component which is non-uniform in the y direction. With these initial conditions,
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Figure 4.4: The time development of the mixing rate of (A) the ion and (B) the electron
for the positive (cross) and the negative (open diamond) shear layers are shown in the same

format of Fig. 2.9.

the constant of motion is obtained from the equation of motion in the x direction,

q dy (dd.) ¢ d4s
medt \ dy /] me dt’

dvg q

dt me Y

(4.3)

where q and m denote the charge and the mass of the particle, ¢ denotes speed of the light

and we used the vector potential A in the relation

B, = Al,=- 4.4
v x Al == (4.4
From eq. (4.3), we obtain
d qA, B
i (1t ) =0
Ax
Vg + % _ const. = Da- (4.5)
me

The equation of motion in the y direction can be transformed to

dv, _ ap 4B

d  m?Y me”
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Figure 4.5: (A) The x component of the ion velocity and (B) the y component of the electric
field are shown at a time t = 72.93)\/V,, which are normalized by Alfvén speed defined in
the region y = +10\ and VaBy/c, respectively. The contour lines show the electrostatic
potential. The cross-section profile of the y component of the electric field in the y direction

averaged over the region from x = 1.56\ to 3.13X (solid black box) is shown in (C).
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99
| D
y ay )
qAx
Vg = Pz — )
mc
and defined the “effective potential” as
1 A2
cb:@Jr_(pw_q ) (4.7)
m 2 mce

The “effective potential” determines the motion of the particle which moves around the

bottom of the potential well.

In the simulation runs, the electrostatic potential is given as

VoBoA
o= 0200 log (cosh (%)) +C (4.8)
so that the y component of the electric field becomes
VoBg )
By = - tank (X) (4.9)

or, equivalently, the x component of the fluid velocity becomes

v
V, =~ tanh (%) (4.10)

Also, the x component of the vector potential is given as
A, = Byy (4.11)

so that the z component of the magnetic field is uniform in the x-y plane. Inserting eqn.
(4.8) and eqn. (4.11) into eqn. (4.7), we obtain the effective potential structure for the

present particle simulations as

Qgs)\ Vo y)) 1 2 qs
— Z — - 4.12
® = 5 log (cosh ()\ + 5 (Pe — Qgsy)” + m. Ci, ( )
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where (gs = ¢;Bo/msc is a gyro frequency of the particle and the subscript s’ denotes the
particle species (ion and electron). The constant value, ¢s/msC7, determines the position of
the origin of the potential. To model the velocity shear layer, which appeared at the outer
edge of the K-H vortex (Fig. 4.5), the structures of the potential well are obtained for the

ion by giving
Vo
Qgi A

where Vo/(§4i)) is a control parameter which expresses the strength of the velocity shear.

= +2.58, (4.13)

(Note + (-) sign stands for the negative (positive) shear layer.) Here we assumed that the

constant of motion of the ion is given as

Ay B
g ~ Uy > +q i
m;C m;C

B
_ Vx(y)—i-q oY
m;cC

Vo Y, . qBoy
= — tanh (= ; 4.14
2 an ()\)+ m;c ( )

Pz = Ug+

For the ions initially located at y=0, the potential structures are obtained for the positive

and the negative velocity shear layer in Figure 4.6. Comparing with the result for the case

g T T T T ——— ——— Y0 L B B S IS S
[ |Without velocity shear A 1 C B

positive shear L

negative shear —————— | 2.6

60~ -

¥/ (N)
¥/(QA)°

Figure 4.6: (A) Potential structures calculated from eqn. (4.12) for the case without velocity
shear (black), the positive shear case (blue) and the negative shear case (red). (B) The

potential profiles around the center of the velocity shear layer are zoomed in the right panel.

without velocity shear, the ions feel stronger potential that confines them at the origin for
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the positive shear case. On the other hand, the negative velocity shear relaxes the potential
structure which has the minimum values around y = 1A and ions initially located at y=0
can freely moves over the velocity shear scale. From these result, the strong velocity shear

effectively increases or decreases the ion gyro radius which is strongly dependent on the sign

of B- Q.

4.5 Modeling the outer edge of the vortex

Extracting the outer edge of the vortex where the positive and the negative velocity shears
are newly induced, the ion motion is investigated by the full particle simulation. The initial

conditions used in the simulation runs are

o Vo/()) = £2.58

/\/rgi = 1.0

Vo|/Va = 1.0

e v=0.2

ﬁion = ﬂelectron = 0.15

[ ] LX = 025)\FGM

The last item indicates that no K-H mode develops during the simulation runs. Figure 4.7
shows the time development of the occupation rate of the ion defined in eq. (2.3) for (A)
the positive and (B) the negative shear cases. As predicted in Fig. 4.6, the ions in the
negative shear layer diffuse in the spatially broader area as compared to the positive shear
case during a few gyro motions. The standard deviation of the position in the y direction is

also calculated by

sdv(t) = /< (ui(t) — 1:(0)2 > — < i(t) — 1:(0) >2, (4.15)

where <> denotes the ensemble average. Figure 4.8 shows the time development of the

standard deviation for the ions initially located inside the layer (y = —1A ~ 1)) for the
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Figure 4.7: The time development of the occupation rate for (A) the positive and (B) the

negative shear cases. Time proceeds from the left to the right. Four snapshots are taken at
t =3.32,6.63,9.95,13.26\/ V.
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positive (solid line) and the negative (dashed line) shear cases. The ions in the positive

3 T T T T T . . , ‘ ‘
: Without shear
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Negative shear --————--
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Figure 4.8: The time development of the standard deviation calculated from eqn. (4.15).
The standard deviation is normalized by the thermal ion gyro radius defined in the region

y=+10 A.

shear layer spread within a scale which is slightly smaller than the thermal gyro radius
defined in the region y = +10A. On the other hand, the ions in the negative shear layer
quickly diffuse in a scale which is about twice larger than the thermal gyro radius. These
results indicate that the ions in the velocity shear newly induced at the outer edge of the

vortex are weakly or strongly scattered.

Returning to the result shown in Fig. 4.5, one recalls that the K-H instability induces the
strong velocity shears at the outer edge of the vortex in the non-linear stage. In the negative
y region the shear layer corresponds to the negative shear and the opposite side corresponds
to the positive one. (For the sake of simplicity, the outer edge of the vortex in the negative
y region is mainly focused since that region is important for the triggering mechanism of the
strong turbulence. Hereinafter, we call this region 'the region N’.) According to the previous

results, the ions have effectively larger gyro radii in the negative shear layer while they are
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confined in the center of the positive shear layer. This characteristic is clearly indicated in
Figure 4.9 in which a sum of the ion and the electron mixing rate (eqn. (2.4)) is shown for
(A) the positive (Bg -2 > 0) and (B) the negative (Bg -2 < 0) shear cases. (For avoiding
any confusions, 'positive (negative) shear case’ notes the initial velocity shear condition, i.e.,
a sign of Bg- g, and ’positive (negative) shear layer’ notes the newly induced velocity shear
at the outer edge of the vortex in the non-linear stage of the K-H instability.) The profile
is snapshotted just prior to the onset of the secondary instability in the positive shear case
(A), and the corresponding profile is taken for the negative shear case (B). The number
density profiles are also shown for comparison in (C) and (D) for each simulation runs. In
the positive shear case (A), the sum of the mixing rate takes a value 2 in the region N,
indicating that the mixing region of the ion is likely to coincide with the that of the electron.
In this case, the region N corresponds to the positive shear layer which effectively decreases
the ion gyro radius. The FLR effect of the ions therefore weakly operates to stabilize the
secondary instability, say, the R-T instability and thus the region N is destabilized even
though the scale of the density interface is of the order of the ion thermal gyro radius as
shown in Fig. 3.25. On the other hand, in the negative shear case (B), the sum of the mixing
rate in the region N reveals more diffusive profile, indicating that the ions are scattered in
the broader area. This region corresponds to the negative shear which effectively increases
the ion gyro radius. Hence, the increased FLR effect of the ion with respect to the density
interface strongly operates to stabilize the secondary instability, and accordingly, the onset

of the strong turbulence.

4.6 Summary and Discussion

The full particle simulations of the K-H instability in the stratified shear layer have shown
the asymmetry in the non-linear development between the positive and the negative velocity
shear cases. In the positive shear case the onset of the secondary instability which leads
the system to the turbulence appears in the early non-linear stage of the K-H instability

(Chapter 3). On the other hand, the apparent transition from the laminar to the turbulent
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Figure 4.9: A sum of the ion and the electron mixing rate is snapshotted at (A)t = 53.87\/V,

for the positive shear case and (B) t = 59.67)/V for the negative shear case. For comparison,

number density profiles are shown in (C) and (D) for each simulation runs.
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flows does not appear in the negative shear case. This asymmetry was interpreted as a result
of an asymmetry in the finite Larmor radius (FLR) effect at the outer edge of the vortex. A
strong velocity shear layer modifies the ion orbit. In a positively sheared layer (B-Q > 0), a
sum of scalar (electric field) and vector (magnetic field) potential acts to confine the ions at
the center of the shear layer, which effectively decreases the ion gyro radius. In contrast to
the positive shear layer, the scalar potential acts to relax the slope of vector potential inside
the negatively sheared layer (B- £ < 0), which makes the ions freely move over a scale of the
velocity shear layer. This cancellation between the scalar and the vector potential effectively

increases the ion gyro radius.

The difference in the FLR effect appears at the newly induced velocity shear layer in the
non-linear stage of the K-H instability. In the positive shear case (Bg - €2¢ > 0) the outer
edge of the vortex in the negative y region, where is R-T unstable, becomes a positive shear.
The FLR effect weakly stabilize the onset of the secondary instability, particularly the R-T
instability. On the other hand, in the negative shear case (Bg - Q¢ < 0), the R-T unstable
region becomes a negative shear layer that increases effectively the ion gyro radius. The

enhanced FLR effect strongly stabilizes the onset of the secondary R-T instability.

The FLR effect on the growth of the R-T instability was discussed by Roberts and Taylor
[1962] and extended by Huba [1996a] by using FLR MHD theory (Roberts and Taylor, 1962).
Huba [1996a] showed the dispersion relation including the FLR effect in the short wavelength
limit (kL, >> 1) as

w? + lvthiﬁkw + = =0, (4.16)

where 1y, vy, and ’g’ denotes ion thermal gyro radius, ion thermal speed, and gravitational
acceleration, respectively. L, is the density gradient scale length. In this limit the FLR

stabilize the instability when
Vel Ly
kL, > 4 Y8 o (4.17)

Uthi Tgi

In the long wavelength limit (kL, << 1), the dispersion relation becomes

1
w? + §vthirgiAk2w + kgA =0, (4.18)
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where A is the Atwood number defined as A = (n; —n2)/(n1 +n2). The FLR effect stabilizes

the instability when

16 gL, (L)’
EL,)? > — — 4.1
(hLa)" > A v, (rgi> (4.19)

In both limits, the FLR effect with respect to the density gradient scale has a stabilizing
effect and limits the unstable wave number region. This effect must be operating strongly at
the density interface where the secondary R-T instability is expected to grow in the negative

velocity shear case.

The present mechanism shown in this chapter is caused by the ion dynamics in the non-
linear stage of the K-H instability which cannot be obtained in a MHD regime. Although
the newly induced velocity shears at the outer edge of the vortex are obtained in both
MHD and kinetic simulations of the stratified K-H instability, the kinetic effect of the ions
alters the non-linear development and produces the asymmetry between the positive and
the negative velocity shear cases. This mechanism can be applied to Sun and the earth
interaction at the dawn and the dusk flank of the earth magnetosphere. Assuming and
simplifying that the magnetic field directs to northward, the dawn (dusk) side becomes a
negatively (positively) sheared layer interacting with the fast tail ward solar wind. Therefore,
the transport mechanism of the solar wind plasma into the earth magnetosphere may reveal

asymmetry between in the dawn and the dusk side flank.
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CHAPTER 5

Concluding remarks

5.1 Summary and Conclusions

The Kelvin-Helmholtz instability has been studied extensively in the interdisciplinary fields.
In the present dissertation the interaction between the solar wind and the earth magneto-
sphere is the objective to elucidate how the K-H instability plays a role in the mass transport
into the earth magnetosphere. For that purpose, the non-linear development of the K-H in-
stability for the transverse magnetic field case was studied in the view point of the mixing

and transport of the collision-less plasmas by means of the computational experiments.

In chapter 2 the development of the K-H instability in a uniform background field was
studied. Kinetic effects of electrons as well as of ions on the mixing process of collision-less
plasmas across the transverse magnetic field were explored by means of full particle simula-
tion. The results indicated that the most mixed region was restricted within the interface
of two plasmas. The interpretation of the time profile of the mixing area was that the in-
terface at which two plasmas face was stretched, folded, and deformed in the course of the
development of the K-H instability and as a result, the increase in the length of the interface
mainly contributed to the increase in the mixing area. The cross-field diffusion in the direc-
tion perpendicular to the interface was also operative at the same time. Incorporating these
two mechanisms, the mixing area was found to be scaled to the dimensionless parameter
\/m. The other point to be noted is the effective electron mixing. Electrons were
found to follow the ion mixing area in spite of the small gyro radius. This mechanism was
caused by the electric field fluctuations. The fluctuated electric field deformed the structure

of the demarcation line of the electron into fine structures and as a result, stretched path
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length of the demarcation line mainly contributed to follow the ion mixing area.

In chapter 3 the development of the K-H instability in a stratified shear layer modeling
the low latitude boundary at the earth magnetosphere was studied by means of MHD and
full particle simulation. What is newly found in this chapter is that the stratification in

density effectively enhances the mixing area both in time and spatial extent.

Ideal MHD simulation showed that two kinds of secondary instabilities which start grow-
ing in the non-linear stage of the K-H instability triggered the onset of the turbulence. One
of them was identified as a secondary K-H instability and the other, which was the more
important finding, was identified as a secondary Rayleigh-Taylor instability. While the sec-
ondary K-H instability was just a seed for the turbulence, the secondary R-T instability
played not only as a seed but also as a mass transporter to the tenuous region. Once the
turbulence was initiated by these secondary instabilities, the normal K-H vortex no longer
maintained its structure and the system proceeded to turbulent structure. In the final stage
of the simulation run the mixing layer extended deeply in the tenuous region and the width

of the mixing layer was much thicker than the size of the normal K-H vortex.

Full particle simulation in the same configuration shown in the ideal MHD simulation
was also carried out for the first time. The result obtained in the ideal MHD simulation was
reproduced except that the secondary R-T instability grew in the early stage of the normal
K-H instability. The first turning over motion of the K-H instability made the fluid element
feel centrifugal force that induced the secondary R-T instability since the thermal fluctuation

which was absent in the ideal MHD simulation existed anywhere at the density interface.

To explore the effect of in-homogeneity in magnetic field on the onset of turbulence, the
ideal MHD simulation was conducted with a in-homogeneous temperature profile without
the density stratification. As a result no development of the turbulence was confirmed in
the ideal MHD regime, and we conclude that the density stratification is important for the

effective mass transport across the velocity shear layer.

In chapter4, the full particle simulations of the K-H instability in the stratified shear

layer showed the asymmetry in the non-linear development between the positive and the
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negative velocity shear cases. In the positive shear case the onset of the secondary instability,
which lead the system to the turbulence, appeared in the early non-linear stage of the K-H
instability (Chapter 3). On the other hand, the apparent transition from the laminar to the
turbulent flows did not appear in the negative shear case. This asymmetry was interpreted
as a result of an asymmetry in the finite Larmor radius (FLR) effect at the outer edge of the
vortex. The difference in the FLR effect appeared at the newly induced velocity shear layer
in the non-linear stage of the K-H instability. In the positive shear case (Bg - Q¢ > 0) the
outer edge of the vortex in the negative y region, where is R-T unstable, became a positive
shear. The FLR effect weakly stabilized the onset of the secondary instability, particularly
the R-T instability. On the other hand, in the negative shear case (Bg - o < 0), the R-T
unstable region became a negative shear layer that increased effectively the ion gyro radius.
The enhanced FLR effect strongly stabilized the onset of the secondary R-T instability and

thus the effective plasma mixing by the strong turbulence.

5.2 Important issues for future works

Since the model used in the present simulations was quite simple as compared to the ac-
tual situation in the magnetosphere, some important issues are remained for the complete

understanding of the mass transport by the K-H instability.

The onset mechanism of turbulence presented in this dissertation is fundamentally hy-
drodynamic. For the case of a inhomogeneous magnetic field geometry, however, a coupling
between the K-H and the plasma micro instabilities is expected to alter the non-linear de-
velopment. Specifically, the lower-hybrid drift instability in the current sheet is expected
to grow faster than the K-H instability and the modified density interface will affect the

development of the turbulence shown in this dissertation.

We have revealed the enhanced electric field excited by the secondary R-T instability
inside the K-H vortex. The mechanism is attributed to the centrifugal force by the rotation
motion, which causes a difference in motion between the ion and electron. This different

responses to the acceleration cause the electrostatic field which deforms the electron mixing
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area. Hence, the lager mass ratio of the ion to the electron will excite the larger amplitude
of the electrostatic field. Therefore, the simulation with the larger mass ratio is expected to
show heatings of plasma by the strong electrostatic field inside the K-H vortex and will be

possible in the near future.

The present simulations were restricted within the 2-D plane. Extending our results to
the three-dimensional K-H instability, some important issues appear to be addressed. In
a three-dimensional hydrodynamical K-H instability, it is known that the stratification in
density causes a secondary instability and turbulence. Because of the strong nonlinearity, the
detail exploration requires huge computer resources and therefore the onset mechanism is still
controversial. Elucidating the onset mechanism in the three-dimensional K-H instability is a
challenging task and remained for the future work. For the application to the magnetospheric
issues, the magnetic field should also comes into play. Exploring the three-dimensional K-H
instability in a MHD regime will also give us a new understanding of the magnetospheric
interactions, in particular, the coupling between the low latitude boundary layer and the

ionosphere.

The results of the turbulent mixing of plasmas by the K-H instability suggest a new
transport mechanism of the solar wind plasma into the earth magnetosphere. This suggestion
will be verified by the in situ observation by the spacecrafts. The stratification in plasma
density is a key point to explore the turbulent mixing across the low latitude boundary layer.
More detailed structure of the turbulent flows will also be clear from the in situ observation
by the multiple spacecrafts of the present and upcoming missions. Observations by the
spacecraft will ensure our model and will again feed us a new issue which always excites us

to explore.
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APPENDIX A

Linear Analysis

A.1 Basic equations

A.1.1 Ideal MHD equations

Linear analysis is examined by solving as an eigen value problem by linearizing the following

normalized forms of MHD equations: equation of continuity,

on
- V. (nV Al
5 V- (nV) (A1)
momentum equation,
ov 1 2
= =—(V-V)V=-V(P+B*)+(B-V)B+g (A.2)
equation of state,
P
%_t =—(V-V)P-TP(V-V) (A.3)

and, Faraday’s law with the frozen-in condition (E = —V x B)

%—E’ =V x (V x B), (A.4)

where I' is a polytropic constant, which is equal to 2 throughout the dissertation. The
number density n and the magnetic field B are normalized by the characteristic value ngy and
By, the velocity V by the jump in velocity across the boundary, Vj, the pressure P by B2 /8,
spatial scale L by initial shear width A, the time by A/Vj, and the gravity acceleration g by
QgiVa.
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A.1.2 Two fluid MHD equations

Two fluid approximation including the electron inertia can be obtained by the following

normalized form of the equations: For species s (s=i:ion, e:electron), equation of continuity,

on
* = -V (n,Vs A.
i (n:Vs) (A-5)
momentum equation,
0V, M; M; g,
[ . E .
5 (Vs- V)V, — M2 quz( +V,xB)+g (A.6)
and, equation of state
0P,
5 = (V- V)P —TP(V- V), (A7)

where M, and ¢s; denote the mass and the charge of species s (=ion, electron). Along with

the plasma equations, electric and magnetic field are solved with maxwell equations,

0B
8E C 2 qs
=) (V xB - ESE”S"S) ’ (49

where ¢ denotes the speed of light. Normalizations are similar to the ideal MHD’s except the
velocity by the Alfvén speed V,, the time by ion gyro-frequency €y, the scale length L by
ion inertia V4 /Qy;, and the electric field by V4By/c. The system of the equations (A.5 - A.9)
can express all modes of plasma waves except the kinetic effects, such as, landau damping

and Bernstein modes.

A.2 Linearization and solution

Physical parameters are perturbed from the equilibrium values of the number density ng =
no(y), the velocity Vo = (V,(y),0,0), the pressure Py = Py(y), the gravity acceleration
= (0,0, —g) and the magnetic field B = (B,(y), 0, B,(y)) as

I

n = ng+on

vV = V0+5V

114



= P0—|—(5p

= B0+b

with the form, 64 = A(y) exp (i(kyz — wt)), where A, k, and w denote a physical parameter,

the wave number in the x direction and the angular frequency, respectively.

A.2.1 Ideal MHD

Linearizing the above Ideal MHD equations(A.1-A.4), one obtains

00 0
won = kVyon + kyngdv, — ing Y _ iﬂévy
oy oy
Oyx k. B, 1 0B,
vy, = kVydv, —1—>46 —0p+ ky—b, + — b
wov ) Zay vy+2n0 D+ - +n0 oy y
0 B, . g
v, = kiVibv, — ——(Op+2B-b)—k,—b —0
wdvy Vp0vy 2n08y(p+ ) -~ y+zn0 n
B, , 0B,
wov, = kyVidv, — kD2, + 9By
T ng Oy
0P, 00
wop = k;Vy.op— iévy—o + I'Pykov, — i’ Py Yy
dy 0y
. 06v . 0B, . 0V,
wbr = kyVyb, —iB, ayy — zévya—y - zbya—y
wby = k;Vpby — kyBgovy
4} B,
whe = yVib, + kuBodvs — iB, 20" — i, 005 1 B s, (A.10)
9y 9y
Solving these equations as a eigen value problem of
on n
5’Ux 5Um
dvy dvy
51)Z Mi,j 5’Uz
w = , (A.11)
op op
by by
by by
b, b,

one can obtain the eigen values of w and the corresponding eigen functions for any k.
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A.2.2 Two fluid MHD

Linearizing a set of the two fluid MHD and Maxwell equations ((A.5) -

(A.9)), one obtains

dvy; . Ong;
wéni = szménz + kaniévm - ’L’I’L()Za Yy — 8n0 5’in
dy oy
wane = kaweéne + kwn065vwe — 1Mpe aévye - ianoe 5”3}6
Y dy
wWovy; = kyViidvg — %61} 2k " Opi + i(eg + 0vy; B,)
5 xe k.CU .
WOVge = kyVieOUge — aLy(Svye + %5% — iR(e; + dvyB,)
i = x Vi A ziBa:_ ziVz — OUgy — 0T
wvy ks Vaidvy, 5o Oy +i(ey + ov Vaib, — v )-I—znoZ on;
R d0pe .
Wovye = kyViyelvye — oo, O — iR(ey + 6v,e By — Vieb, — dvge B,) + Zn—oe(Sne
WiV, = kyViidv, + (e, + Viiby — dvyiBy)
WOVze = kyViyedVye — iR (e, + Vieby — S0y By)
U)dpi = szmépz — 25’1)3”—0 + FPOkaévm — ZFPOZ' Uy
dy dy
P e - e
wope = kzViedDe — i(SUyea L ['Py.kydvge — iI' Py, dovy
dy oy
2 [0b,
we, = 1 (i> l— — N0i0Vgi — 01 Vi + NoeOUge + 5neVme]
Va dy
wey, = ( ) [kzb, — 1(N0i0Vy; — NoedUye)]
Va
c\? 0by
we, = (7A> l—kzb za—y — 1(ngidv,; — n0€5vze)]
Oe,
wbr = —1 ;y
wby = —kge,
Oey
wbz = kyey,+1 (A.12)

oy’
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where R denotes a mass ratio of ion’s to electron’s. As have been done for the ideal MHD

case, these equations are solved as an eigen value problem of

One One
6vwi 5Uan'
5Uave 5vace
5’in 5’in
OVye OVye
) Vi 5vzi
o ze M, ij 5vze
w = : (A.13)
6pi 5pz
dpe 0Pe
(%% €x
€y €y
€, €.
by bs
by by
b, b,

to obtain the eigen values of w and the corresponding eigen functions for any k.
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APPENDIX B

Rayleigh-Taylor instability

Rayleigh-Taylor instability induced by the normal K-H instability is a important process for
the effective plasma mixing and transport as shown in Chap. 3. Here a basic nature and the

linear analysis of the R-T instability are shown.

B.1 Rayleigh-Taylor instability

Consider the situation of the heavy fluid superposed onto the light fluid under the presence
of the gravity force. Such a density interface is unstable and is well known as Rayleigh-
Taylor instability. Early efforts have analyzed the linear properties of the R-T instability
(Chandrasekhar, 1961; Sharp, 1984). The linear growth rate of the R-T instability for a

sharp density interface can be obtained analytically. Let the density profile to be

ni(zr) = mny, where z <0,

ni(r) = mng, where z >0, (B.1)

one can obtain the growth rate

7 =\ kgA, (B.2)
where k is the wave number along the interface (y direction) and A is the Atwood number,

A="1"T2 (B.3)
n1 + Na

For the magnetized plasma applications the R-T instability have also been studied in the
framework of ideal MHD. As in the K-H instability the orientation of the magnetic field acts

for the stabilization if it aligns with the density interface and does not affect the growth

119



if it directs perpendicular to both the direction of the density gradient and the interface.
Recently Huba and Winske[1998] showed that the kinetic effects of the ion affect the growth
rate for a non-uniform magnetic field configuration. While the hall term in the generalized
Ohm’s law enhances the growth rate in the large wave number region, the finite Larmor

radius (FLR) effect stabilizes.

To check the linear growth of the R-T instability in the full particle simulation result
shown in Chap. 3, the linear analysis based on the two fluid MHD equations (Appendix A)

is conducted in this section. Parameters used in the analysis is as follows:

o fi=p. =015

AN = 1.0

A = 0.6667

g/(QgiVa) = —0.08

Wee/Wpe = 0.35

n(y) = 0.5nq [(1 + 5.0) — (1 — 5.0) tanh (y/A)]

Figure B.1 shows the initial condition of (A)the z component of the magnetic field , (B)the
sum of ion and electron thermal pressure, and (C)the ion density. Figure B.2 shows the
growth rate of the R-T instability with respect to the wave number in the x direction in the
two fluid MHD regime. The result of ideal MHD case is also shown. While a finite boundary
width stabilize the large wave number modes, the significant difference between the two fluid
and ideal MHD results cannot be found in the present configuration, which can be applied

to the result of full particle simulation in Chap. 3.
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Figure B.1: Initial setting for the linear analysis. From the top to the bottom panel shown are
(A)the z component of the magnetic field, (B)the sum of ion and electron thermal pressure,

and (C)the ion density with respect to the y coordinate.
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Figure B.2: Growth rate of the R-T instability in the two fluid MHD regime (solid red line).
The abscissa shows the wave number in the x direction normalized by the initial boundary
width and the ordinate shows the growth rate normalized by a factor A/V,. Along with the
two fluid MHD result ideal (black) and the analytic solution of eq.(B.2) are shown.
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